2,632 research outputs found

    Baryogenesis with Scalar Bilinears

    Get PDF
    We show that if a baryon asymmetry of the universe is generated through the out-of-equilibrium decays of heavy scalar bilinears coupling to two fermions of the minimal standard model, it is necessarily an asymmetry conserving (BL)(B-L) which cannot survive past the electroweak phase transition because of sphalerons. We then show that a surviving (BL)(B-L) asymmetry may be generated if the heavy scalars decay into two fermions, \underline {and into two light scalars} (which may be detectable at hadron colliders). We list all possible such trilinear scalar interactions, and discuss how our new baryogenesis scenario may occur naturally in supersymmetric grand unified theories.Comment: LATEX, 14 pages, one figure include

    Models of Neutrino Masses and Baryogenesis

    Get PDF
    Majorana masses of the neutrino implies lepton number violation and is intimately related to the lepton asymmetry of the universe, which gets related to the baryon asymmetry of the universe in the presence of the sphalerons during the electroweak phase transition. Assuming that the baryon asymmetry of the universe is generated before the electroweak phase transition, it is possible to dicriminate different classes of models of neutrino masses. While see-saw mechanism and the triplet higgs mechanism are preferred, the Zee-type radiative models and the R-parity breaking models requires additional inputs to generate baryon asymmetry of the universe during the electroweak phase transition.Comment: 27 pages including 5 figures; Review article for Pramana: the Indian Journal of Physic

    Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative

    Get PDF
    <div><p>Objectives</p><p>The existence of phenotypes has been hypothesized to explain the large heterogeneity characterizing the knee osteoarthritis. In a previous systematic review of the literature, six main phenotypes were identified: Minimal Joint Disease (MJD), Malaligned Biomechanical (MB), Chronic Pain (CP), Inflammatory (I), Metabolic Syndrome (MS) and Bone and Cartilage Metabolism (BCM). The purpose of this study was to classify a sample of individuals with knee osteoarthritis (KOA) into pre-defined groups characterized by specific variables that can be linked to different disease mechanisms, and compare these phenotypes for demographic and health outcomes.</p><p>Methods</p><p>599 patients were selected from the OAI database FNIH at 24 months’ time to conduct the study. For each phenotype, cut offs of key variables were identified matching the results from previous studies in the field and the data available for the sample. The selection process consisted of 3 steps. At the end of each step, the subjects classified were excluded from the further classification stages. Patients meeting the criteria for more than one phenotype were classified separately into a ‘complex KOA’ group.</p><p>Results</p><p>Phenotype allocation (including complex KOA) was successful for 84% of cases with an overlap of 20%. Disease duration was shorter in the MJD while the CP phenotype included a larger number of Women (81%). A significant effect of phenotypes on WOMAC pain (F = 16.736 p <0.001) and WOMAC physical function (F = 14.676, p < 0.001) was identified after controlling for disease duration.</p><p>Conclusion</p><p>This study signifies the feasibility of a classification of KOA subjects in distinct phenotypes based on subgroup-specific characteristics.</p></div

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Recrudescence of massive fermion production by oscillons

    Get PDF
    We bring together the physics of preheating, following a period of inflation, and the dynamics of non-topological solitons, namely oscillons. We show that the oscillating condensate that makes up an oscillon can be an efficient engine for producing heavy fermions, just as a homogeneous condensate is known for doing the same. This then allows heavy fermions to be produced when the energy scale of the Universe has dropped below the scale naturally associated to the fermions

    Functional and molecular characterization of hyposensitive underactive bladder tissue and urine in streptozotocin-induced diabetic rat

    Get PDF
    Background: The functional and molecular alterations of nerve growth factor (NGF) and Prostaglandin E2 (PGE2) and its receptors were studied in bladder and urine in streptozotocin (STZ)-induced diabetic rats. Methodology/Principal Findings: Diabetes mellitus was induced with a single dose of 45 mg/kg STZ Intraperitoneally (i.p) in female Sprague-Dawley rats. Continuous cystometrogram were performed on control rats and STZ treated rats at week 4 or 12 under urethane anesthesia. Bladder was then harvested for histology, expression of EP receptors and NGF by western blotting, PGE2 levels by ELISA, and detection of apoptosis by TUNEL staining. In addition, 4-hr urine was collected from all groups for urine levels of PGE2, and NGF assay. DM induced progressive increase of bladder weight, urine production, intercontraction interval (ICI) and residual urine in a time dependent fashion. Upregulation of Prostaglandin E receptor (EP)1 and EP3 receptors and downregulation of NGF expression, increase in urine NGF and decrease levels of urine PGE2 at week 12 was observed. The decrease in ICI by intravesical instillation of PGE2 was by 51% in control rats and 31.4% in DM group at week 12. Conclusions/Significance: DM induced hyposensitive underactive bladder which is characterized by increased inflammatory reaction, apoptosis, urine NGF levels, upregulation of EP1 and EP3 receptors and decreased bladder NGF and urine PGE2. The data suggest that EP3 receptor are potential targets in the treatment of diabetes induced underactive bladder. © 2014 Nirmal et al

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Role of OmpA2 surface regions of Porphyromonas gingivalis in host-pathogen interactions with oral epithelial cells

    Get PDF
    Outer membrane protein A (OmpA) is a key outer membrane protein found in Gram-negative bacteria that contributes to several crucial processes in bacterial virulence. In Porphyromonas gingivalis, OmpA is predicted as a heterotrimer of OmpA1 and OmpA2 subunits encoded by adjacent genes. Here we describe the role of OmpA and its individual subunits in the interaction of P. gingivalis with oral cells. Using knockout mutagenesis, we show that OmpA2 plays a significant role in biofilm formation and interaction with human epithelial cells. We used protein structure prediction software to identify extracellular loops of OmpA2, and determined these are involved in interactions with epithelial cells as evidenced by inhibition of adherence and invasion of P. gingivalis by synthetic extracellular loop peptides and the ability of the peptides to mediate interaction of latex beads with human cells. In particular, we observe that OmpA2-loop 4 plays an important role in the interaction with host cells. These data demonstrate for the first time the important role of P. gingivalis OmpA2 extracellular loops in interaction with epithelial cells, which may help design novel peptide-based antimicrobial therapies for periodontal disease

    CLICK:One-step generation of conditional knockout mice

    Get PDF
    Abstract Background CRISPR/Cas9 enables the targeting of genes in zygotes; however, efficient approaches to create loxP-flanked (floxed) alleles remain elusive. Results Here, we show that the electroporation of Cas9, two gRNAs, and long single-stranded DNA (lssDNA) into zygotes, termed CLICK (CRISPR with lssDNA inducing conditional knockout alleles), enables the quick generation of floxed alleles in mice and rats. Conclusions The high efficiency of CLICK provides homozygous knock-ins in oocytes carrying tissue-specific Cre, which allows the one-step generation of conditional knockouts in founder (F0) mice
    corecore