1,189 research outputs found

    Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations

    Get PDF
    © The Author(s) 2019.Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.Peer reviewe

    Synthesis and Biological Evaluation of some Novel 2-Mercaptobenzothiazoles Carrying 1,3,4-Oxadiazole, 1,3,4-Thiadiazole and 1,2,4-Triazole Moieties

    Get PDF
    Several 2-mercaptobenzothiazole derivatives containing 1,3,4-oxadiazoles, 1,2,4-triazoles and 1,3,4-thiadiazoles at the second position were synthesized. Some of these synthesized compounds were evaluated for their in vivo analgesic, anti-inflammatory, acute toxicity and ulcerogenic actions. Some of the tested compounds showed significant analgesic and anti-inflammatory activities. Two of the compounds showed significant gastrointestinal protection compared to the standard drug diclofenac sodium. The compounds were also tested for their in vitro antimicrobial activity with most displaying selective activity against the Gram-negative bacteria Pseudomonas aeruginosa. In the present investigation the tested compounds did not possess antifungal activity.Keywords: 2-Mercaptobenzothiazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, Antimicrobial Activity, Anti-inflammatory Activit

    Bayesian optimisation of hexagonal honeycomb metamaterial

    Get PDF
    Periodic mechanical metamaterials, such as hexagonal honeycombs, have traditionally been designed with uniform cell walls to simplify manufacturing and modelling. However, recent research has suggested that varying strut thickness within the lattice could improve its mechanical properties. To fully explore this design space, we developed a computational framework that leverages Bayesian optimisation to identify configurations with increased uniaxial effective elastic stiffness and plastic or buckling strength. The best topologies found, representative of relative densities with distinct failure modes, were additively manufactured and tested, resulting in a 54% increase in stiffness without compromising the buckling strength for slender architectures, and a 63% increase in elastic modulus and a 88% increase in plastic strength for higher volume fractions. Our results demonstrate the potential of Bayesian optimisation and solid material redistribution to enhance the performance of mechanical metamaterials

    Synthesis, Analgesic, Anti-inflammatory and Antimicrobial Activities of Some Novel Pyrazoline Derivatives

    Get PDF
    Purpose: Microbial infections often produce pain and inflammation. Chemotherapeutic, analgesic and anti-inflammatory drugs are prescribed simultaneously in normal practice. The compound possessing all three activities is not common.The purpose of the present study was to examine whether molecular modification might result in detection of new potential antirheumatic drugs having antimicrobial activities. Method: A series of novel 4-(5&#8242;-substituted aryl-4&#8242;, 5&#8242;-dihydropyrazole-3&#8242;-yl-amino) phenols 2a-f have been synthesized by treating substituted aryl-N-chalconyl amino phenols 1a-f with hydrazine hydrate. The starting materials were synthesized from p-aminoacetophenone. Their structures were confirmed by IR, 1H NMR spectral data. The synthesized compounds were investigated for analgesic, ant-inflammatory and antimicrobial activities. Result: The data reported in Tables 2, 3 & 4 shows that effect of variation in chemical structure on activity was rather unpredictable. Seldom did a particular structural modification lead to uniform alteration in activity in all tests. The substitution which appeared to be most important for high order of activity in the greatest number of test was the p-choloroaryl group. The introduction of p-nitro and p-hydroxy group in aryl moiety of the pyrazole analogs 2c and 2e produce compounds with potent analgesic, anti-inflamatory and, in a few cases, antimicrobial properties. Conclusion: The observed increase in analgesic, anti-inflammatory and antimicrobial activities are attributed to the presence of 4-NO2, 2-OH and 4-Cl in phenyl ring at 5-position of pyrazoline ring of synthesized compounds. In some cases their activities are equal or more potent than the standard drugs. Keywords: Pyrazole, Analgesic, Anti-inflammatory, Antibacterial activity Tropical Journal of Pharmaceutical Research Vol. 7 (2) 2008: pp. 961-96

    Magnesiothermic Reduction of Silica: A Machine Learning Study

    Get PDF
    undamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO2 molar ratios (1–4) in the temperature range of 1073 to 1373 K with different reaction times (10–240 min). Due to the kinetic barriers occurring in metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical software FactSage (version 8.2) and its databanks are not adequate to describe the experimental observations. The unreacted silica core encapsulated by the reduction products can be found in some parts of laboratory samples. However, other parts of samples show that the metallothermic reduction disappears almost completely. Some quartz particles are broken into fine pieces and form many tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core model is thus inadequate to represent such complicated reaction schemes. In the present work, an attempt is made to apply a machine learning approach using hybrid datasets in order to describe complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium relations calculated by the thermochemical database are also introduced as boundary conditions for the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its advantages when describing small datasets. A composite kernel for the GPM is specifically developed to mitigate the overfitting problems commonly encountered when using generic kernels. Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-SiO2 mixtures, temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been covered by experiments. Additional experimental validation indicates that the GPM works well for the interpolates of the observations.publishedVersio

    Reliability and Validity of the Malay Version of Edinburgh Postpartum Depression Scale (EPDS) When Administered to Postpartum Mothers at Two Points in Time

    Get PDF
    Introduction: Edinburgh Postpartum Depression Scale (EPDS) is a tool used to assess the risk of postpartum depression (PPD). In this study we determined the reliability and validity of the Malay version of EPDS when administered at two different time points in the postpartum period. Materials and Methods: This cross-sectional study design was carried out between May and September 2017 at three government primary healthcare clinics located in Batang Padang district, a suburban area of Perak state in Peninsular Malaysia. We recruited a total of 89 women; 41 women were in the early postpartum period (1-30 days) and 48 women were in the late postpartum period (31-120 days). Cronbach's alpha coefficient, inter-item correlation, and corrected item-total correlation were used to assess the internal consistency. The concurrent validity was assessed using Spearman’s correlation. The data were analyzed using SPSS version 20 and R 3.4.2. Results: The Cronbach’s alpha for the first and second group was 0.78 and 0.62, respectively, which indicated satisfactory reliability. At both time periods, removing Item 2 from the scale resulted in a significant increase in Cronbach’s alpha (to 0.847 and 0.709, respectively). As expected, the EPDS scores correlated moderately with the BDI-II scores (1−30 days: Spearman's rho = 0.65, p &lt; 0.01; 31−120 days: Spearman's rho = 0.73, p &lt; 0.01). Conclusion: The Malay version of the EPDS is a reliable screening instrument for detecting postpartum depression. It showed reasonability and feasibility and can be used in postpartum clinical settings or for assessing intervention effects in research studies. Furthermore, as our results indicated, removing Item 2 from the Malay version would increase the internal consistency of the EPDS

    A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics.

    Full text link
    BACKGROUND AND OBJECTIVES: Over the past two decades, medical imaging has been extensively apply to diagnose diseases. Medical experts continue to have difficulties for diagnosing diseases with a single modality owing to a lack of information in this domain. Image fusion may be use to merge images of specific organs with diseases from a variety of medical imaging systems. Anatomical and physiological data may be included in multi-modality image fusion, making diagnosis simpler. It is a difficult challenge to find the best multimodal medical database with fusion quality evaluation for assessing recommended image fusion methods. As a result, this article provides a complete overview of multimodal medical image fusion methodologies, databases, and quality measurements. METHODS: In this article, a compendious review of different medical imaging modalities and evaluation of related multimodal databases along with the statistical results is provided. The medical imaging modalities are organized based on radiation, visible-light imaging, microscopy, and multimodal imaging. RESULTS: The medical imaging acquisition is categorized into invasive or non-invasive techniques. The fusion techniques are classified into six main categories: frequency fusion, spatial fusion, decision-level fusion, deep learning, hybrid fusion, and sparse representation fusion. In addition, the associated diseases for each modality and fusion approach presented. The quality assessments fusion metrics are also encapsulated in this article. CONCLUSIONS: This survey provides a baseline guideline to medical experts in this technical domain that may combine preoperative, intraoperative, and postoperative imaging, Multi-sensor fusion for disease detection, etc. The advantages and drawbacks of the current literature are discussed, and future insights are provided accordingly

    Directly Printable Organic ASK Based Chipless RFID Tag for IoT Applications

    Get PDF
    A chipless RFID tag with unique ASK encoding technique is presented in this paper. The coding efficiency is enhanced regarding tag capacity. The amplitude variations of the backscattered RFID signal is used for encoding data instead of OOK Strips of different widths are used to have amplitude variations. The ASK technique is applied using three different substrates of Kapton (R) HN, PET, and paper. To incorporate ASK technique, dual polarized rhombic shaped resonators are designed. These tags operate in the frequency range of 3.1-10.6 GHz with size of 70 x 42 mm(2). The presented tags are flexible and offer easy printability. The paper-based decomposable organic tag appears as an ultra low-cost solution for wide scale tracking. This feature enables them to secure a prominent position in the emerging fields of IoT and green electronics
    corecore