19,776 research outputs found
The essential oil of Thymbra capitata and its application as a biocide on stone and derived surfaces
Many chemicals used nowadays for the preservation of cultural heritage pose a risk to both human health and the environment. Thus, it is desirable to find new and eco-friendly biocides that can replace the synthetic ones. In this regard, plant essential oils represent effective alternatives to synthetic substances for the preservation of historical monuments. Thymbra capitata (syn. Thymus capitatus) is a medicinal and aromatic plant growing in the Mediterranean area and endowed with important pharmacological properties related to its essential oil. Among them, the antimicrobial ones make the T. capitata essential oil an ideal candidate for industrial applications; for instance, as biocide for the inhibition and elimination of biological patinas of cyanobacteria and green algae on historical monuments. In the present work, we studied the chemical composition of the essential oil from T. capitata growing in Malta by gas chromatography-mass spectrometry (GC/MS). The major volatile component is the phenolic monoterpene carvacrol (73.2%), which is capable of damaging the cytoplasmic membrane and to interfere both in the growth curve and in the invasive capacity, though the contribution of minor components γ-terpinene and p-cymene cannot be disregarded. For the oil application on the stone surface, Pickering emulsions systems were prepared with an essential oil/water 1:3 mass ratio stabilized with kaolinite at 4 mass% in the presence of Laponite®; this allowed to limit the fast volatility of the oil and guaranteed a better application and an easier removal from the artefacts attacked by biodeteriogens both indoor and outdoor. This formulation caused the elimination of biodeteriogens from treated surfaces without residuals or films on artworks surface, and the effect was retained up to four months
Declarative process modeling in BPMN
Traditional business process modeling notations, including the standard Business Process Model and Notation (BPMN), rely on an imperative paradigm wherein the process model captures all allowed activity flows. In other words, every flow that is not specified is implicitly disallowed. In the past decade, several researchers have exposed the limitations of this paradigm in the context of business processes with high variability. As an alternative, declarative process modeling notations have been proposed (e.g., Declare). These notations allow modelers to capture constraints on the allowed activity flows, meaning that all flows are allowed provided that they do not violate the specified constraints. Recently, it has been recognized that the boundary between imperative and declarative process modeling is not crisp. Instead, mixtures of declarative and imperative process modeling styles are sometimes preferable, leading to proposals for hybrid process modeling notations. These developments raise the question of whether completely new notations are needed to support hybrid process modeling. This paper answers this question negatively. The paper presents a conservative extension of BPMN for declarative process modeling, namely BPMN-D, and shows that Declare models can be transformed into readable BPMN-D models. © Springer International Publishing Switzerland 2015
Clinical Processes - The Killer Application for Constraint-Based Process Interactions?
For more than a decade, the interest in aligning information
systems in a process-oriented way has been increasing. To enable operational
support for business processes, the latter are usually specified in
an imperative way. The resulting process models, however, tend to be too
rigid to meet the flexibility demands of the actors involved. Declarative
process modeling languages, in turn, provide a promising alternative in
scenarios in which a high level of flexibility is demanded. In the scientific
literature, declarative languages have been used for modeling rather simple
processes or synthetic examples. However, to the best of our knowledge,
they have not been used to model complex, real-world scenarios
that comprise constraints going beyond control-flow. In this paper, we
propose the use of a declarative language for modeling a sophisticated
healthcare process scenario from the real world. The scenario is subject to
complex temporal constraints and entails the need for coordinating the
constraint-based interactions among the processes related to a patient
treatment process. As demonstrated in this work, the selected real process
scenario can be suitably modeled through a declarative approach.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED
Bubbling with -almost constant mean curvature and an Alexandrov-type theorem for crystals
A compactness theorem for volume-constrained almost-critical points of
elliptic integrands is proven. The result is new even for the area functional,
as almost-criticality is measured in an integral rather than in a uniform
sense. Two main applications of the compactness theorem are discussed. First,
we obtain a description of critical points/local minimizers of elliptic
energies interacting with a confinement potential. Second, we prove an
Alexandrov-type theorem for crystalline isoperimetric problems
Swift J053041.9-665426, a new Be/X-ray binary pulsar in the Large Magellanic Cloud
We observed the newly discovered X-ray source Swift J053041.9-665426 in the
X-ray and optical regime to confirm its proposed nature as a high mass X-ray
binary. We obtained XMM-Newton and Swift X-ray data, along with optical
observations with the ESO Faint Object Spectrograph, to investigate the
spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton
data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma).
The X-ray spectrum can be modelled by an absorbed power law with photon index
within the range 0.76 to 0.87. The addition of a black body component increases
the quality of the fit but also leads to strong dependences of the photon
index, black-body temperature and absorption column density. We identified the
only optical counterpart within the error circle of XMM-Newton at an angular
distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical
spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray
pulsations and long-term variability, as well as the properties of the optical
counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary
pulsar in the Large Magellanic Cloud.Comment: 10 pages, 8 figures, accepted for publication in A&
XMM-Newton observation of SNR J0533-7202 in the Large Magellanic Cloud
Aims. We present an X-ray study of the supernova remnant SNR J0533-7202 in
the Large Magellanic Cloud (LMC) and determine its physical characteristics
based on its X-ray emission. Methods. We observed SNR J0533-7202 with
XMM-Newton (flare-filtered exposure times of 18 ks EPIC-pn and 31 ks
EPIC-MOS1/MOS2). We produced X-ray images of the SNR, performed an X-ray
spectral analysis, and compared the results to multi-wavelength studies.
Results. The distribution of X-ray emission is highly non-uniform, with the
south-west region brighter than the north-east. The X-ray emission is
correlated with the radio emission from the remnant. We determine that this
morphology is likely due to the SNR expanding into a non-uniform ambient medium
and not an absorption effect. We estimate the size to be 53.9 (\pm 3.4) x 43.6
(\pm 3.4) pc, with the major axis rotated ~64 degrees east of north. We find no
spectral signatures of ejecta and infer that the X-ray plasma is dominated by
swept-up interstellar medium. Using the spectral fit results and the Sedov
self-similar solution, we estimate an age of ~17-27 kyr, with an initial
explosion energy of (0.09-0.83) x 10^51 erg. We detected an X-ray source
located near the centre of the remnant, namely XMMU J053348.2-720233. The
source type could not be conclusively determined due to the lack of a
multi-wavelength counterpart and low X-ray counts. We find that it is likely
either a background active galactic nucleus or a low-mass X-ray binary in the
LMC. Conclusions. We detected bright thermal X-ray emission from SNR J0533-7202
and determined that the remnant is in the Sedov phase of its evolution. The
lack of ejecta emission prohibits us from typing the remnant with the X-ray
data. Therefore, the likely Type Ia classification based on the local stellar
population and star formation history reported in the literature cannot be
improved upon.Comment: 7 pages, 4 figures, accepted for publication in Astronomy and
Astrophysic
Discovery of a 168.8 s X-ray pulsar transiting in front of its Be companion star in the Large Magellanic Cloud
We report the discovery of LXP169, a new high-mass X-ray binary (XRB) in the
LMC. The optical counterpart has been identified and appears to exhibit an
eclipsing light curve. We performed follow-up observations to clarify the
eclipsing nature of the system. Energy spectra and time series were extracted
from two XMM-Newton observations to search for pulsations, characterise the
spectrum, and measure spectral and timing changes. Long-term X-ray variability
was studied using archival ROSAT data. The XMM positions were used to identify
the optical counterpart. We obtained UV to NIR photometry to characterise the
companion, along with its 4000 d long I-band light curve. We observed LXP169
with Swift at two predicted eclipse times. We found a spin period of 168.8 s
that did not change between two XMM observations. The X-ray spectrum, well
characterised by a power law, was harder when the source was brighter. The
X-ray flux of LXP169 is found to be variable by a factor of at least 10. The
counterpart is highly variable on short and long timescales, and its photometry
is that of an early-type star with a NIR excess. This classifies the source as
a BeXRB pulsar. We observed a transit in the UV, thereby confirming that the
companion star itself is eclipsed. We give an ephemeris for the transit of MJD
56203.877 + N*24.329. We propose and discuss the scenario where the matter
captured from the companion's equatorial disc creates an extended region of
high density around the neutron star (NS), which partially eclipses the
companion as the NS transits in front of it. This is most likely the first time
the compact object in an XRB is observed to eclipse its companion star. LXP169
would be the first eclipsing BeXRB, and a wealth of important information might
be gained from additional observations, such as a measure of the possible Be
disc/orbital plane misalignment, or the mass of the NS.Comment: Updated version of arXiv 1302.4665v1, accepted for publication in
Astronomy and Astrophysics. 11 pages, 8 figures, 3 table
- …
