489 research outputs found
Comment on "low time resolution analysis of polar ice cores cannot detect impulsive nitrate events" by D.F. Smart et al.
AbstractSmart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggest that the observed spikes are associated with sodium or another nonacidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events.EW is supported by a Royal Society Professorship.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/2015JA02157
Comment on "low time resolution analysis of polar ice cores cannot detect impulsive nitrate events" by D.F. Smart et al.
Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggests that the observed spikes are associated with sodium or another non-acidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events.EW is supported by a Royal Society Professorship.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/2015JA02157
Comment on "low time resolution analysis of polar ice cores cannot detect impulsive nitrate events" by D.F. Smart et al.
Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggests that the observed spikes are associated with sodium or another non-acidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events.EW is supported by a Royal Society Professorship.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/2015JA02157
Comment on "Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events" by D.F. Smart et al.
©2016. American Geophysical Union. All Rights Reserved. Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggest that the observed spikes are associated with sodium or another nonacidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events
Atmospheric CO2 and d13C-CO2 reconstruction of the little ice age from antarctic ice cores
The decrease of atmospheric CO2 concentration recorded in Antarctic ice around 1600 AD is one of the most significant atmospheric changes to have occurred during the last millennia, before the onset of the industrial period.Together with the temperature decrease, the CO2 drop has been used to derive the sensitivity of carbon stores to climate. However, the cause of it is still under debate because models are not yet able to reproduce either its
magnitude, or its timing. Here we present new measurements of the CO2 concentration decrease recorded in an ice core from a medium accumulation rate site in Antarctica (DML). We show that the new record is compatible(differences <2 ppm) with the CO2 record from the high accumulation rate DSS site on Law Dome (East Antarctica), when the different age distributions are taken into account. We have also measured the d13C-CO2 change in DML ice, filling a gap around 1600 AD in the DSS d13C record. We use a double deconvolution of the CO2 and d13C records together to provide quantitative evidence that the CO2 decrease was caused by a change in the net flux to the terrestrial biosphere. Finally, we provide a new interpretation of a published record showing increasing atmospheric carbonyl sulphide during the CO2 decrease, suggesting that cooler LIA climate affected terrestrial biospheric fluxes. Altogether our findings support the hypothesis that reduced soil heterotrophic respiration is likely to have given the most significant contribution to the LIA CO2 decrease implying a positive CO2-climate feedback. © 2015, Authors
Natural and anthropogenic changes in atmospheric greenhouse gases over the past 2 millennia
Millennial changes in atmospheric trace gas composition are best determined from air enclosed in ice sheets. Air extracted from the open pores in firn and the bubbles in ice is measured to derive the past concentrations and isotopic ratios of the long lived trace gases. The significant increases observed in CO2, CH4 and N2O since about 1750 and the more recent appearance of synthetic gases such as the CFCs in the atmosphere are a key feature of the anthropocene. The millennia preceding the anthropocene, the Late Pre-Industrial Holocene (LPIH), show evidence of natural changes in trace gases that can be used to constrain models and improve their ability to predict future changes under scenarios of anthropogenic emissions and climate change. Precise measurements and ice core air samples that are accurately dated and highly resolved in time are required to record the small and rapid trace gas signals of this period. The atmospheric composition records produced by CSIRO and collaborators using the Law Dome, Antarctica ice cores are widely used in models of climate, atmospheric chemistry and the carbon cycle over the anthropocene and the LPIH. Results from these studies have been influential in informing global policies, including the Montreal and Kyoto Protocols. We will present the recently revised trace gas records from Law Dome and new measurements of tracers from these and other ice sites that reveal the causes of atmospheric changes over the anthropocene and the LPIH
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
- …
