534 research outputs found
Off-line radiometric analysis of Planck/LFI data
The Planck Low Frequency Instrument (LFI) is an array of 22
pseudo-correlation radiometers on-board the Planck satellite to measure
temperature and polarization anisotropies in the Cosmic Microwave Background
(CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the
performances of the LFI, a software suite named LIFE has been developed. Its
aims are to provide a common platform to use for analyzing the results of the
tests performed on the single components of the instrument (RCAs, Radiometric
Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA).
Moreover, its analysis tools are designed to be used during the flight as well
to produce periodic reports on the status of the instrument. The LIFE suite has
been developed using a multi-layered, cross-platform approach. It implements a
number of analysis modules written in RSI IDL, each accessing the data through
a portable and heavily optimized library of functions written in C and C++. One
of the most important features of LIFE is its ability to run the same data
analysis codes both using ground test data and real flight data as input. The
LIFE software suite has been successfully used during the RCA/RAA tests and the
Planck Integrated System Tests. Moreover, the software has also passed the
verification for its in-flight use during the System Operations Verification
Tests, held in October 2008.Comment: Planck LFI technical papers published by JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission
We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data
Near-Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations.
Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ∼ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ∼40 s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons
A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline
The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the
handling of the scientific and housekeeping telemetry. It is a critical
component of the Planck ground segment which has to strictly commit to the
project schedule to be ready for the launch and flight operations. In order to
guarantee the quality necessary to achieve the objectives of the Planck
mission, the design and development of the Level 1 software has followed the
ESA Software Engineering Standards. A fundamental step in the software life
cycle is the Verification and Validation of the software. The purpose of this
work is to show an example of procedures, test development and analysis
successfully applied to a key software project of an ESA mission. We present
the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by
detailing the methods used and the results obtained. Different approaches have
been used to test the scientific and housekeeping data processing. Scientific
data processing has been tested by injecting signals with known properties
directly into the acquisition electronics, in order to generate a test dataset
of real telemetry data and reproduce as much as possible nominal conditions.
For the HK telemetry processing, validation software have been developed to
inject known parameter values into a set of real housekeeping packets and
perform a comparison with the corresponding timelines generated by the Level 1.
With the proposed validation and verification procedure, where the on-board and
ground processing are viewed as a single pipeline, we demonstrated that the
scientific and housekeeping processing of the Planck-LFI raw data is correct
and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI
papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jins
Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers
The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries
eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each
composed of a pair of pseudo-correlation receivers. We describe the on-ground
calibration campaign performed to qualify the flight model RCAs and to measure
their pre-launch performances. Each RCA was calibrated in a dedicated
flight-like cryogenic environment with the radiometer front-end cooled to 20K
and the back-end at 300K, and with an external input load cooled to 4K. A
matched load simulating a blackbody at different temperatures was placed in
front of the sky horn to derive basic radiometer properties such as noise
temperature, gain, and noise performance, e.g. 1/f noise. The spectral response
of each detector was measured as was their susceptibility to thermal variation.
All eleven LFI RCAs were calibrated. Instrumental parameters measured in these
tests, such as noise temperature, bandwidth, radiometer isolation, and
linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and
Astrophysic
A multistep process for the dispersal of a Y chromosomal lineage in the Mediterranean area
Tn this work we focus on a microsatellite-defined Y-chromosomal lineage (network 1.2) identified by us and reported in previous studies, whose geographic distribution and antiquity appear to be compatible with the Neolithic spread of farmers. Here, we set network 1.2 in the Y-chromosomal phylogenetic tree, date it with respect to other lineages associated with the same movements by other authors, examine its diversity by means of tri- and tetranucleotide loci and discuss the implications hi reconstructing the spread of this group of chromosomes in the Mediterranean area. Our results define a tripartite phylogeny wit-bin HG 9 (Rosser et al. 2000) with the deepest branching defined by alleles T (Haplogroup Eu 10) or G (Haplogroup Eu9) at M172 (Semino et al. 2000), and a subsequent branching within Eu9 defined by network 1.2. Population distributions of HG 9 and network 1.2 show that their occurrence in the surveyed area is not due to the spread of people from a single parental population but, rather, to a process punctuated by at least two phases. Our data identify the wide area of the Balkans, Aegean and Anatolia as the possible homeland harbouring the largest variation within network 1.2. The use of recently proposed tests based on the stepwise mutation model suggests that its spread was associated to a population expansion, xvith a high rate of male gene flow in the Turkish Greek area
Optimization of Planck/LFI on--board data handling
To asses stability against 1/f noise, the Low Frequency Instrument (LFI)
onboard the Planck mission will acquire data at a rate much higher than the
data rate allowed by its telemetry bandwith of 35.5 kbps. The data are
processed by an onboard pipeline, followed onground by a reversing step. This
paper illustrates the LFI scientific onboard processing to fit the allowed
datarate. This is a lossy process tuned by using a set of 5 parameters Naver,
r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level
of distortion introduced by the onboard processing, EpsilonQ, as a function of
these parameters. It describes the method of optimizing the onboard processing
chain. The tuning procedure is based on a optimization algorithm applied to
unprocessed and uncompressed raw data provided either by simulations, prelaunch
tests or data taken from LFI operating in diagnostic mode. All the needed
optimization steps are performed by an automated tool, OCA2, which ends with
optimized parameters and produces a set of statistical indicators, among them
the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr =
2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup
the process an analytical model is developed that is able to extract most of
the relevant information on EpsilonQ and Cr as a function of the signal
statistics and the processing parameters. This model will be of interest for
the instrument data analysis. The method was applied during ground tests when
the instrument was operating in conditions representative of flight. Optimized
parameters were obtained and the performance has been verified, the required
data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of
3.8% of white noise rms well within the requirements.Comment: 51 pages, 13 fig.s, 3 tables, pdflatex, needs JINST.csl, graphicx,
txfonts, rotating; Issue 1.0 10 nov 2009; Sub. to JINST 23Jun09, Accepted
10Nov09, Pub.: 29Dec09; This is a preprint, not the final versio
Planck-LFI radiometers tuning
"This paper is part of the Prelaunch status LFI papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jinst"
This paper describes the Planck Low Frequency Instrument tuning activities
performed through the ground test campaigns, from Unit to Satellite Levels.
Tuning is key to achieve the best possible instrument performance and tuning
parameters strongly depend on thermal and electrical conditions. For this
reason tuning has been repeated several times during ground tests and it has
been repeated in flight before starting nominal operations. The paper discusses
the tuning philosophy, the activities and the obtained results, highlighting
developments and changes occurred during test campaigns. The paper concludes
with an overview of tuning performed during the satellite cryogenic test
campaign (Summer 2008) and of the plans for the just started in-flight
calibration.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in JINST. IOP Publishing Ltd is not responsible for
any errors or omissions in this version of the manuscript or any version
derived from it. The definitive publisher authenticated version is available
online at http://dx.doi.org/10.1088/1748-0221/4/12/T12013
- …
