40,957 research outputs found

    An inordinate fondness?: the number, distributions, and origins of diatom species

    Get PDF
    The number of extant species of diatoms is estimated here to be at least 30,000 and probably ca. 100,000, by extrapolation from an eclectic sample of genera and species complexes. Available data, although few, indicate that the pseudocryptic species being discovered in many genera are not functionally equivalent. Molecular sequence data show that some diatom species are ubiquitously dispersed. A good case can be made that at least some diatom species and even a few genera are endemics, but many such claims are still weak. The combination of very large species numbers and relatively rapid dispersal in diatoms is inconsistent with some versions of the ubiquity hypothesis of protist biogeography, and appears paradoxical. However, population genetic data indicate geographical structure in all the (few) marine and freshwater species that have been examined in detail, sometimes over distances of a few tens of kilometres. The mode of speciation may often be parapatric, in the context of a constantly shifting mosaic of temporarily isolated (meta) populations, but if our intermediate dispersal hypothesis is true (that long-distance dispersal is rare, but not extremely rare), allopatric speciation could also be maximized

    Assigned responsibility for remote robot operation

    Get PDF
    The remote control of robots, known as teleoperation, is a non-trivial task, requiring the operator to make decisions based on the information relayed by the robot about its own status as well as its surroundings. This places the operator under significant cognitive load. A solution to this involves sharing this load between the human operator and automated operators. This paper builds on the idea of adjustable autonomy, proposing Assigned Responsibility, a way of clearly delimiting control responsibility over one or more robots between human and automated operators. An architecture for implementing Assigned Responsibility is presented

    Adaptive planning for distributed systems using goal accomplishment tracking

    Get PDF
    Goal accomplishment tracking is the process of monitoring the progress of a task or series of tasks towards completing a goal. Goal accomplishment tracking is used to monitor goal progress in a variety of domains, including workflow processing, teleoperation and industrial manufacturing. Practically, it involves the constant monitoring of task execution, analysis of this data to determine the task progress and notification of interested parties. This information is usually used in a passive way to observe goal progress. However, responding to this information may prevent goal failures. In addition, responding proactively in an opportunistic way can also lead to goals being completed faster. This paper proposes an architecture to support the adaptive planning of tasks for fault tolerance or opportunistic task execution based on goal accomplishment tracking. It argues that dramatically increased performance can be gained by monitoring task execution and altering plans dynamically

    Suprathermal electron distributions in the solar transition region

    Full text link
    Suprathermal tails are a common feature of solar wind electron velocity distributions, and are expected in the solar corona. From the corona, suprathermal electrons can propagate through the steep temperature gradient of the transition region towards the chromosphere, and lead to non-Maxwellian electron velocity distribution functions (VDFs) with pronounced suprathermal tails. We calculate the evolution of a coronal electron distribution through the transition region in order to quantify the suprathermal electron population there. A kinetic model for electrons is used which is based on solving the Boltzmann-Vlasov equation for electrons including Coulomb collisions with both ions and electrons. Initial and chromospheric boundary conditions are Maxwellian VDFs with densities and temperatures based on a background fluid model. The coronal boundary condition has been adopted from earlier studies of suprathermal electron formation in coronal loops. The model results show the presence of strong suprathermal tails in transition region electron VDFs, starting at energies of a few 10 eV. Above electron energies of 600 eV, electrons can traverse the transition region essentially collision-free. The presence of strong suprathermal tails in transition region electron VDFs shows that the assumption of local thermodynamic equilibrium is not justified there. This has a significant impact on ionization dynamics, as is shown in a companion paper

    Goal accomplishment tracking for automatic supervision of plan execution

    Get PDF
    It is common practice to break down plans into a series of goals or sub-goals in order to facilitate plan execution, thereby only burdening the individual agents responsible for their execution with small, easily achievable objectives at any one time, or providing a simple way of sharing these objectives amongst a group of these agents. Ensuring that plans are executed correctly is an essential part of any team management. To allow proper tracking of an agent's progress through a pre-planned set of goals, it is imperative to keep track of which of these goals have already been accomplished. This centralised approach is essential when the agent is part of a team of humans and/or robots, and goal accomplishment is not always being tracked at a low level. This paper presents a framework for an automated supervision system to keep track of changes in world states so as to chart progress through a pre-planned set of goals. An implementation of this framework on a mobile service robot is presented, and applied in an experiment which demonstrates its feasibility

    Collective effects in the collapse-revival phenomenon and squeezing in the Dicke model

    Full text link
    Resonant interaction of a collection of two-level atoms with a single-mode coherent cavity field is considered in the framework of the Dicke model. We focus on the role of collective atomic effects in the phenomenon of collapses and revivals of the Rabi oscillations. It is shown that the behavior of the system strongly depends on the initial atomic state. In the case of the initial half-excited Dicke state we account for a number of interesting phenomena. The correlations between the atoms result in a suppression of the revival amplitude, and the revival time is halved, compared to the uncorrelated fully-excited and ground states. The phenomenon of squeezing of the radiation field in the atom-field interaction is also discussed. For the initial fully-excited and ground atomic states, the field is squeezed on the short-time scale, and squeezing can be enhanced by increasing the number of atoms. Some empirical formulas are found which describe the behavior of the system in excellent agreement with numerical results. For the half-excited Dicke state, the field can be strongly squeezed on the long-time scale in the case of two atoms. This kind of squeezing is enhanced by increasing the intensity of the initial coherent field and is of the same nature as revival-time squeezing in the Jaynes-Cummings model. The appearance of this long-time squeezing can be explained using the factorization approximation for semiclassical atomic states.Comment: REVTeX, 13 pages, 19 figures, published in PR

    Dynamical N-body Equlibrium in Circular Dilaton Gravity

    Full text link
    We obtain a new exact equilibrium solution to the N-body problem in a one-dimensional relativistic self-gravitating system. It corresponds to an expanding/contracting spacetime of a circle with N bodies at equal proper separations from one another around the circle. Our methods are straightforwardly generalizable to other dilatonic theories of gravity, and provide a new class of solutions to further the study of (relativistic) one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin
    corecore