29,520 research outputs found

    Almost sure exponential stability of numerical solutions for stochastic delay differential equations

    Get PDF
    Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of SDDEs directly. This is significantly different from most traditional methods by which the almost sure exponential stability is derived from the moment stability by the Chebyshev inequality and the Borel–Cantelli lemma

    Delay-dependent robust stability of stochastic delay systems with Markovian switching

    Get PDF
    In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method

    Approximate solutions of stochastic differential delay equations with Markovian switching

    Get PDF
    Our main aim is to develop the existence theory for the solutions to stochastic differential delay equations with Markovian switching (SDDEwMSs) and to establish the convergence theory for the Euler-Maruyama approximate solutions under the local Lipschitz condition. As an application, our results are used to discuss a stochastic delay population system with Markovian switching

    Gravitational lensing effects on sub-millimetre galaxy counts

    Full text link
    We study the effects on the number counts of sub-millimetre galaxies due to gravitational lensing. We explore the effects on the magnification cross section due to halo density profiles, ellipticity and cosmological parameter (the power-spectrum normalisation σ8\sigma_8). We show that the ellipticity does not strongly affect the magnification cross section in gravitational lensing while the halo radial profiles do. Since the baryonic cooling effect is stronger in galaxies than clusters, galactic haloes are more concentrated. In light of this, a new scenario of two halo population model is explored where galaxies are modeled as a singular isothermal sphere profile and clusters as a Navarro, Frenk and White (NFW) profile. We find the transition mass between the two has modest effects on the lensing probability. The cosmological parameter σ8\sigma_8 alters the abundance of haloes and therefore affects our results. Compared with other methods, our model is simpler and more realistic. The conclusions of previous works is confirm that gravitational lensing is a natural explanation for the number count excess at the bright end.Comment: 10 pages, 10 figures, accepted by MNRA

    Delay-dependent exponential stability of neutral stochastic delay systems

    Get PDF
    This paper studies stability of neutral stochastic delay systems by linear matrix inequality (LMI) approach. Delay dependent criterion for exponential stability is presented and numerical examples are conducted to verify the effectiveness of the proposed method

    Convergence of Monte Carlo simulations involving the mean-reverting square root process

    Get PDF
    The mean-reverting square root process is a stochastic differential equation (SDE) that has found considerable use as a model for volatility, interest rate, and other financial quantities. The equation has no general, explicit solution, although its transition density can be characterized. For valuing path-dependent options under this model, it is typically quicker and simpler to simulate the SDE directly than to compute with the exact transition density. Because the diffusion coefficient does not satisfy a global Lipschitz condition, there is currently a lack of theory to justify such simulations. We begin by showing that a natural Euler-Maruyama discretization provides qualitatively correct approximations to the first and second moments. We then derive explicitly computable bounds on the strong (pathwise) error over finite time intervals. These bounds imply strong convergence in the limit of the timestep tending to zero. The strong convergence result can be used to justify the method within Monte Carlo simulations that compute the expected payoff of financial products. We spell this out for a bond with interest rate given by the mean-reverting square root process, and for an up-and-out barrier option with asset price governed by the mean-reverting square root process. We also prove convergence for European and up-and-out barrier options under Heston's stochastic volatility model - here the mean-reverting square root process feeds into the asset price dynamics as the squared volatility

    The size of the largest fluctuations in a market model with Markovian switching

    Get PDF
    This paper considers the size of the large fluctuations of a stochastic differential equation with Markovian switching. We concentrate on processes which obey the Law of the Iterated Logarithm, or obey upper and lower iterated logarithm growth bounds on their almost sure partial maxima. The results are applied to financial market models which are subject to random regime shifts. We prove that the security exhibits the same long-run growth properties and deviations from the trend rate of growth as conventional geometric Brownian motion, and also that the returns, which are non-Gaussian, still exhibit the same growth rate in their almost sure large deviations as stationary continuous-time Gaussian processes
    corecore