1,015 research outputs found

    Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces

    Get PDF
    The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The design of the particles and the experimental setup are presented. The magnetic configurations of simple particle arrangements are obtained via energy minimization in simulations. The simulations show that a 3D configuration can become energetically favourable over 2D configurations, if the shape of the particle is modified

    James Leigh Cellars Wine Descriptions

    Get PDF
    These proof copies of labels that will adhere to the back of a wine bottle describe the 2003 Walla Walla Valley Spofford Station Merlot, the 2003 Walla Walla Valley Cabernet Sauvignon, the 2003 Walla Walla Valley Palette and the 2003 Walla Walla Valley Spofford Station Syrah, all from James Leigh Cellars. The Merlot, Cabernet Sauvignon, and Syrah all received accolades from Wine Enthusiast

    The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies

    Full text link
    A study of the adsorption of CO on late 4d and 5d5d transition metal (111) surfaces (Ru, Rh, Pd, Ag, Os, Ir, and Pt) considering atop and hollow site adsorption is presented. The applied functionals include the gradient corrected PBE and BLYP functional, and the corresponding hybrid Hartree-Fock density functionals HSE and B3LYP. We find that PBE based hybrid functionals (specifically HSE) yield, with the exception of Pt, the correct site order on all considered metals, but they also considerably overestimate the adsorption energies compared to experiment. On the other hand, the semi-local BLYP functional and the corresponding hybrid functional B3LYP yield very satisfactory adsorption energies and the correct adsorption site for all surfaces. We are thus faced with a Procrustean problem: the B3LYP and BLYP functionals seem to be the overall best choice for describing adsorption on metal surfaces, but they simultaneously fail to account well for the properties of the metal, vastly overestimating the equilibrium volume and underestimating the atomization energies. Setting out from these observations, general conclusions are drawn on the relative merits and drawbacks of various semi-local and hybrid functionals. The discussion includes a revised version of the PBE functional specifically optimized for bulk properties and surface energies (PBEsol), a revised version of the PBE functional specifically optimized to predict accurate adsorption energies (rPBE), as well as the aforementioned BLYP functional. We conclude that no semi-local functional is capable to describe all aspects properly, and including non-local exchange also only improves some, but worsens other properties.Comment: 12 pages, 6 figures; to be published in New Journal of Physic

    Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals, and partially self-consistent GW: an efficient route to construct ab-initio tight-binding parameters for e_g perovskites

    Full text link
    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e_g states of the prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without additional on-site Hubbard U term, hybrid-DFT, and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e_g tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise "noninteracting" TB parameters, and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.Comment: 30 pages, 7 figure

    NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    Get PDF
    We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave++local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.Comment: 3 figures, supplementary material include

    A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy

    Get PDF
    We present an innovative method for magnetic resonance force microscopy (MRFM) with ultra-low dissipation, by using the higher modes of the mechanical detector as radio frequency (rf) source. This method allows MRFM on samples without the need to be close to an rf source. Furthermore, since rf sources require currents that give dissipation, our method enables nuclear magnetic resonance experiments at ultra-low temperatures. Removing the need for an on-chip rf source is an important step towards a MRFM which can be widely used in condensed matter physics.Comment: 7 pages, 5 figures, to be submitted to Physical Review Applie

    Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia.

    Get PDF
    OBJECTIVES: The aim of this study was to investigate the modulatory effect of the coxsackie and adenovirus receptor (CAR) on ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. BACKGROUND: A heritable component in the risk of ventricular fibrillation during myocardial infarction has been well established. A recent genome-wide association study of ventricular fibrillation during acute myocardial infarction led to the identification of a locus on chromosome 21q21 (rs2824292) in the vicinity of the CXADR gene. CXADR encodes the CAR, a cell adhesion molecule predominantly located at the intercalated disks of the cardiomyocyte. METHODS: The correlation between CAR transcript levels and rs2824292 genotype was investigated in human left ventricular samples. Electrophysiological studies and molecular analyses were performed using CAR haploinsufficient (CAR(+/-)) mice. RESULTS: In human left ventricular samples, the risk allele at the chr21q21 genome-wide association study locus was associated with lower CXADR messenger ribonucleic acid levels, suggesting that decreased cardiac levels of CAR predispose to ischemia-induced ventricular fibrillation. Hearts from CAR(+/-) mice displayed slowing of ventricular conduction in addition to an earlier onset of ventricular arrhythmias during the early phase of acute myocardial ischemia after ligation of the left anterior descending artery. Expression and distribution of connexin 43 were unaffected, but CAR(+/-) hearts displayed increased arrhythmia susceptibility on pharmacological electrical uncoupling. Patch-clamp analysis of isolated CAR(+/-) myocytes showed reduced sodium current magnitude specifically at the intercalated disk. Moreover, CAR coprecipitated with NaV1.5 in vitro, suggesting that CAR affects sodium channel function through a physical interaction with NaV1.5. CONCLUSIONS: CAR is a novel modifier of ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. Genetic determinants of arrhythmia susceptibility (such as CAR) may constitute future targets for risk stratification of potentially lethal ventricular arrhythmias in patients with coronary artery disease
    corecore