7,186 research outputs found
VLBI observations of SN2011dh: imaging of the youngest radio supernova
We report on the VLBI detection of supernova SN2011dh at 22GHz using a subset
of the EVN array. The observations took place 14 days after the discovery of
the supernova, thus resulting in a VLBI image of the youngest radio-loud
supernova ever. We provide revised coordinates for the supernova with
milli-arcsecond precision, linked to the ICRF. The recovered flux density is a
factor 2 below the EVLA flux density reported by other authors at the same
frequency and epoch of our observations. This discrepancy could be due to
extended emission detected with the EVLA or to calibration problems in the VLBI
and/or EVLA observations.Comment: Letter. Accepted in A&
Stellar Scattering and the Formation of Hot-Jupiters in Binary Systems
Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with
orbital periods days. Although they lie close to the star, several
have finite eccentricities and significant misalignment angle with respect to
the stellar equator.
Two mechanisms have been proposed to explain the excited and misaligned
sub-population of HJs: Lidov-Kozai migration and planet-planet scattering.
Although both are based on completely different dynamical phenomena, they
appear to be equally effective in generating hot planets. Nevertheless, there
has been no detailed analysis comparing the predictions of both mechanisms.
In this paper we present numerical simulations of Lidov-Kozai trapping of
single planets in compact binary systems. Both the planet and the binary are
initially placed in coplanar orbits, although the inclination of the impactor
is assumed random. After the passage of the third star, we follow the orbital
and spin evolution of the planet using analytical models based on the octupole
expansion of the secular Hamiltonian.
The present work aims at the comparison of the two mechanisms, as an
explanation for the excited and inclined HJs in binary systems. We compare the
results obtained through this paper with results in Beaug\'e & Nesvorn\'y 2012,
where the authors analyze how the planet-planet scattering mechanisms works.
Several of the orbital characteristics of the simulated HJs are caused by
tidal trapping from quasi-parabolic orbits, independent of the driving
mechanism. These include both the 3-day pile-up and the distribution in the
eccentricity vs semimajor axis plane. However, the distribution of the
inclinations shows significant differences. While Lidov-Kozai trapping favors a
more random distribution, planet-planet scattering shows a large portion of
bodies nearly aligned with the equator of the central star.Comment: 12 pages, 6 figures. Accepted for publication at IJAB (internation
journal of astrobiology
Atmospheric turbulence in phase-referenced and wide-field interferometric images: Application to the SKA
Phase referencing is a standard calibration procedure in radio
interferometry. It allows to detect weak sources by using quasi-simultaneous
observations of closeby sources acting as calibrators. Therefore, it is assumed
that, for each antenna, the optical paths of the signals from both sources are
similar. However, atmospheric turbulence may introduce strong differences in
the optical paths of the signals and affect, or even waste, phase referencing
for cases of relatively large calibrator-to-target separations and/or bad
weather. The situation is similar in wide-field observations, since the random
deformations of the images, mostly caused by atmospheric turbulence, have
essentially the same origin as the random astrometric variations of
phase-referenced sources with respect to the phase center of their calibrators.
In this paper, we present the results of a Monte Carlo study of the astrometric
precision and sensitivity of an interferometric array (a realization of the
Square Kilometre Array, SKA) in phase-referenced and wide-field observations.
These simulations can be extrapolated to other arrays by applying the
corresponding corrections. We consider several effects from the turbulent
atmosphere (i.e., ionosphere and wet component of the troposphere) and also
from the antenna receivers. We study the changes in dynamic range and
astrometric precision as a function of observing frequency, source separation,
and strength of the turbulence. We find that, for frequencies between 1 and 10
GHz, it is possible to obtain images with high fidelity, although the
atmosphere strongly limits the sensitivity of the instrument compared to the
case with no atmosphere. Outside this frequency window, the dynamic range of
the images and the accuracy of the source positions decrease. [...] (Incomplete
abstract. Please read manuscript.)Comment: 9 pages, 11 figures. Accepted for publication in A&A
Optical spectroscopy of microquasar candidates at low galactic latitudes
We report optical spectroscopic observations of a sample of 6 low-galactic
latitude microquasar candidates selected by cross-identification of X-ray and
radio point source catalogs for |b|<5 degrees. Two objects resulted to be of
clear extragalactic origin, as an obvious cosmologic redshift has been measured
from their emission lines. For the rest, none exhibits a clear stellar-like
spectrum as would be expected for genuine Galactic microquasars. Their
featureless spectra are consistent with being extragalactic in origin although
two of them could be also highly reddened stars. The apparent non-confirmation
of our candidates suggests that the population of persistent microquasar
systems in the Galaxy is more rare than previously believed. If none of them is
galactic, the upper limit to the space density of new Cygnus X-3-like
microquasars within 15 kpc would be 1.1\times10^{-12} per cubic pc. A similar
upper limit for new LS 5039-like systems within 4 kpc is estimated to be
5.6\times10^{-11} per cubic pc.Comment: 7 pages, 7 figures. Published in A&A, see
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004A%26A...413..309
Elucidating mysteries of phase-segregated membranes: Mobile-lipid recruitment facilitates pores' passage to the fluid phase
Phase segregation of multicomponent lipid bilayers leads to, under phase-coexistence conditions, domain formation, featuring delimitation by essentially one-dimensional borders. (Micro-)phase segregation of bilayers is proposed to influence the physiological behaviour of cell membranes and provides the driving force for lipid-raft formation. Experiments show a maximum in the electrical-conductivity of membranes at the phase-transition point, which has been conjectured to arise from border-nucleated transmembrane-conducting defects or pores. However, recent electroporation experiments on phase-segregated bilayers demonstrate electro-pore detection in the liquid disordered phase (Ld), wherein they diffuse over macroscopic periods without absorption into the liquid ordered phase (Lo). Here, we scrutinise transmembrane-pore formation via molecular dynamics simulations on a multicomponent phase-segregated bilayer. We find that pores created in Lo domains always migrate spontaneously to the Ld phase, via 'recruitment' of unsaturated lipids to the pore's rim to transport the pore to the fluid phase under a large stress-field driving force. Once in Ld domains, pores migrate towards their centre, never returning or pinning to Lo. These findings are explained by thermodynamics. By comparing the free-energy cost for creating pores in the bulk of Ld and Lo membranes, and in the phase-segregated system, we show that it is always more energetically tractable to create pores in Ld domains, independent of the pore size.Fil: López Martí, Jesús María. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: English, Niall J.. University College Dublin; IrlandaFil: del Popolo, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentin
Diagnóstico y tratamiento de la espondilomielopatís caudal cervical (síndrome del wobbler) en el perro
La espondilomielopatía caudal cervical es un sindrome de comprension cervical medular muy comun en la clinica diaria de pequeños animales y de compleja etiologia y patogenesis. Este articulo pretende exponer una revision actualizada de sus aspectos clinicos mas relevantes, su diagnostico y sus diversas formas de tratamiento conservador y quirurgico
Aspectos biológicos y mecánicos de la inter-fase clavo-hueso en fijación externa (¿por qué se sueltan los clavos de fijación?)
La longevidad y durabilidad de los clavos de fijación externa está íntimamente relacionada con los acontecimientos biológico-mecánicos que ocurren a nivel de la interfase entre el metal y el hueso
Opciones quirúrgicas en fracturas femorales conminutas
Las fracturas femorales son las fracturas apendiculares más comunes en la clínica veterinaria diaria, muy a menudo a consecuencia de considerable trauma. Su resolución quirúrgica, en presencia de conminución, puede convertirse en un reto con un alto grado de dificultad para muchos cirujanos. La creación de nuevas técnicas de resolución de estas fracturas, así como avances en el diseño y aplicación de diferentes implantes de osteosíntesis, han abierto recientemente nuevas perspectivas al cirujano veterinario. En este artículo se pretende exponer una revisión actualizada de las diferentes técnicas disponibles para la resolución de estas fracturas.Femoral fractures are the most common apendicular fractures in our daily veterinary practice, very often as a result of considerable trauma. Their surgical resolution, in the presence of comminution, can become a very diíficult challenge for many surgeons. The creation of new techniques for fixation of these fractures, along with advances in the design and application of osteosynthesis implants has recently opened new possibilities to the veterinary surgeon. In this paper, the author intends to present an updated review of the different available techniques for the surgical resolution of these fractures
- …
