1,563 research outputs found

    Finite mixture clustering of human tissues with different levels of IGF-1 splice variants mRNA transcripts

    Get PDF
    BACKGROUND: This study addresses a recurrent biological problem, that is to define a formal clustering structure for a set of tissues on the basis of the relative abundance of multiple alternatively spliced isoforms mRNAs generated by the same gene. To this aim, we have used a model-based clustering approach, based on a finite mixture of multivariate Gaussian densities. However, given we had more technical replicates from the same tissue for each quantitative measurement, we also employed a finite mixture of linear mixed models, with tissue-specific random effects. RESULTS: A panel of human tissues was analysed through quantitative real-time PCR methods, to quantify the relative amount of mRNA encoding different IGF-1 alternative splicing variants. After an appropriate, preliminary, equalization of the quantitative data, we provided an estimate of the distribution of the observed concentrations for the different IGF-1 mRNA splice variants in the cohort of tissues by employing suitable kernel density estimators. We observed that the analysed IGF-1 mRNA splice variants were characterized by multimodal distributions, which could be interpreted as describing the presence of several sub-population, i.e. potential tissue clusters. In this context, a formal clustering approach based on a finite mixture model (FMM) with Gaussian components is proposed. Due to the presence of potential dependence between the technical replicates (originated by repeated quantitative measurements of the same mRNA splice isoform in the same tissue) we have also employed the finite mixture of linear mixed models (FMLMM), which allowed to take into account this kind of within-tissue dependence. CONCLUSIONS: The FMM and the FMLMM provided a convenient yet formal setting for a model-based clustering of the human tissues in sub-populations, characterized by homogeneous values of concentrations of the mRNAs for one or multiple IGF-1 alternative splicing isoforms. The proposed approaches can be applied to any cohort of tissues expressing several alternatively spliced mRNAs generated by the same gene, and can overcome the limitations of clustering methods based on simple comparisons between splice isoform expression levels

    IGFBP-3 inhibits Wnt signaling in metastatic melanoma cells.

    Get PDF
    In previous works, we have shown that insulin-like growth factor-binding protein-3 (IGFBP-3), a tissue and circulating protein able to bind to IGFs, decreases drastically in the blood serum of patients with diffuse metastatic melanoma. In agreement with the clinical data, recombinant IGFBP-3 was found to inhibit the motility and invasiveness of cultured metastatic melanoma cells and to prevent growth of grafted melanomas in mice. The present work was aimed at identifying the signal transduction pathways underlying the anti-tumoral effects of IGFBP-3. We show that the anti-tumoral effect of IGFBP-3 is due to inhibition of the Wnt pathway and depends upon the presence of CD44, a receptor protein known to modulate Wnt signaling. Once it has entered the cell, IGFBP-3 binds the Wnt signalosome interacting specifically with its component GSK-3β. As a consequence, the β-catenin destruction complex dissociates from the LRP6 Wnt receptor and GSK-3β is activated through dephosphorylation, becoming free to target cytoplasmic β-catenin which is degraded by the proteasomal pathway. Altogether, the results suggest that IGFBP-3 is a novel and effective inhibitor of Wnt signaling. As IGFBP-3 is a physiological protein which has no detectable toxic effects either on cultured cells or live mice, it might qualify as an interesting new therapeutic agent in melanoma, and potentially many other cancers with a hyperactive Wnt signaling

    1976 Base Data for the Dairy Market Policy Simulator

    Full text link
    A.E. Res. 80-2

    THE FUTURE OF WILDFLOWER RESEARCH AND DEVELOPMENT IN SOUTH AFRICA - THE LACHENALIA CASE STUDY

    Get PDF
    This paper reports the socio-economic impact of the lachenalia research program of the ARCRoodeplaat Vegetable and Ornamental Plant Institute (ARC-Roodeplaat) over the period 1965-2010. Data were collected from researchers, the local propagator and the market agent in Holland, using guidelines and questionnaires. A financial and economic analysis were conducted. The results of both were negative, unless increased productivity, early entry into all potential markets and a decreased research gestation period were assumed. Additional impacts were qualitatively assessed. The program contributed to employment creation, the preservation of biodiversity, capacity building and beneficial institutional linkages. The management information generated by the study was used in planning and priority setting at the institute.Crop Production/Industries, Research and Development/Tech Change/Emerging Technologies,

    Molecular analysis of endocrine disruption in hornyhead turbot at wastewater outfalls in southern california using a second generation multi-species microarray.

    Get PDF
    Sentinel fish hornyhead turbot (Pleuronichthysverticalis) captured near wastewater outfalls are used for monitoring exposure to industrial and agricultural chemicals of ~ 20 million people living in coastal Southern California. Although analyses of hormones in blood and organ morphology and histology are useful for assessing contaminant exposure, there is a need for quantitative and sensitive molecular measurements, since contaminants of emerging concern are known to produce subtle effects. We developed a second generation multi-species microarray with expanded content and sensitivity to investigate endocrine disruption in turbot captured near wastewater outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g., estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with a series of phenotypic end points. Molecular analyses of turbot livers uncovered altered expression of vitellogenin and zona pellucida protein, indicating exposure to one or more estrogenic chemicals, as well as, alterations in cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase-α indicating induction of the detoxification response. Molecular responses indicative of exposure to endocrine disruptors were observed in field-caught hornyhead turbot captured in Southern California demonstrating the utility of molecular methods for monitoring environmental chemicals in wastewater outfalls. Moreover, this approach can be adapted to monitor other sites for contaminants of emerging concern in other fish species for which there are few available gene sequences

    A software-based self test of CUDA Fermi GPUs

    Get PDF
    Nowadays, Graphical Processing Units (GPUs) have become increasingly popular due to their high computational power and low prices. This makes them particularly suitable for high-performance computing applications, like data elaboration and financial computation. In these fields, high efficient test methodologies are mandatory. One of the most effective ways to detect and localize hardware faults in GPUs is a Software-Based-Self-Test methodology (SBST). In this paper a fully comprehensive SBST and fault localization methodology for GPUs is presented. This novel approach exploits different custom test strategies for each component inside the GPU architecture. Such strategies guarantee both permanent fault detection and accurate fault localization

    Increasing the robustness of CUDA Fermi GPU-based systems

    Get PDF
    Nowadays Graphical processing Units (GPUs) have become increasingly popular due to their high computational power and low prices. This makes them particularly suitable for high-performance computing applications, like data elaboration and image processing. In these fields, the capability of properly work even in presence of faults is mandatory. This paper presents an innovative approach, that combines a Software Based Self Test & Diagnosis (SBSTD) methodology with a fault mitigation strategy, to increase the robustness of a CUDA Fermi GPU-based system

    Bleeding jejunal varices and portal thrombosis in a splenectomized patient with hereditary spherocytosis

    Get PDF
    Bleeding from varices located in the small bowel is a very uncommon finding; nonetheless, such events accompany with a high mortality rate (1– 4). Moreover, early diagnosis of jejunal or ileal varices cannot usually be accomplished with standard diagnostic tools (ie, esophagogastroduodenoscopy, colonoscopy). Most reports in the literature relate to subjects with liver cirrhosis, often with hepatocarcinoma; in unusual anatomical situations, varices may develop beyond the ligament of Treitz in adjunct to the far more common location in the esophageal and gastric wall. Thrombosis of the portal vein is a common feature in such conditions. Portal thrombosis has also been described in association with overt or latent myeloproliferative diseases (5); its occurrence in nonneoplastic hematological conditions in subjects with normal liver function is quite uncommon. This report describes the observation of jejunal varices, with repeated episodes of “melena of unknown origin,” some of which quite severe, as their clinical presentation in a patient with portal thrombosis and with otherwise absolutely normal liver function, who had undergone splenectomy for hereditary spherocytosis in early adolescence

    Genetic heterogeneity and recombination in human type 2 astroviruses

    Get PDF
    Novel lineages of human astrovirus (HAstV) types 2, 2c, and 2d have been identified. Upon sequencing of the 3= end of the genome, the type 2c and 2d HAstVs were found to be open reading frame 1b (ORF1b)-ORF2 recombinant, with ORF1b being derived from type 3 and type 1 HAstVs, respectively. An ORF2 interlineage recombinant strain, 2c/2b, was also identified

    Assignment of the group A rotavirus NSP4 gene into genotypes using a hemi-nested multiplex PCR assay: a rapid and reproducible assay for strain surveillance studies

    Get PDF
    The rotavirus non-structural protein NSP4 has been implicated in a number of biological functions during the rotavirus cellular cycle and pathogenesis, and has been addressed as a target for vaccine development. The NSP4 gene has been classified into six genotypes (A-F). A semi-nested triplex PCR was developed for genotyping the major human NSP4 genotypes (A-C), which are common in human rotavirus strains but are also shared among most mammalian rotavirus strains. A total of 192 previously characterized human strains representing numerous G and P type specificities (such as G1P[8], G1P[4], G2P[4], G3P[3], G3P[8], G3P[9], G4P[6], G4P[8], G6P[4], G6P[9], G6P[14], G8P[10], G8P[14], G9P[8], G9P[11], G10P[11], G12P[6] and G12P[8]) were tested for NSP4 specificity by the collaborating laboratories. An additional 35 animal strains, including the reference laboratory strains SA11 (simian, G3P[2]), NCDV (bovine, G6P[1]), K9 and CU-1 (canine, G3P[3]), together with 31 field isolates (canine, G3P[3]; feline, G3P[9]; porcine, G2P[23], G3P[6], G4P[6], G5P[6], G5P[7], G5P[26], G5P[27], G9P[6] and G9P[7]) were also successfully NSP4-typed. Four human G3P[9] strains and one feline G3P[9] strain were found to possess an NSP4 A genotype, instead of NSP4 C, suggesting a reassortment event between heterologous strains. Routine NSP4 genotyping may help to determine the genomic constellation of rotaviruses of man and livestock, and identify interspecies transmission of heterologous strain
    corecore