17,325 research outputs found
Face pairing graphs and 3-manifold enumeration
The face pairing graph of a 3-manifold triangulation is a 4-valent graph
denoting which tetrahedron faces are identified with which others. We present a
series of properties that must be satisfied by the face pairing graph of a
closed minimal P^2-irreducible triangulation. In addition we present
constraints upon the combinatorial structure of such a triangulation that can
be deduced from its face pairing graph. These results are then applied to the
enumeration of closed minimal P^2-irreducible 3-manifold triangulations,
leading to a significant improvement in the performance of the enumeration
algorithm. Results are offered for both orientable and non-orientable
triangulations.Comment: 30 pages, 57 figures; v2: clarified some passages and generalised the
final theorem to the non-orientable case; v3: fixed a flaw in the proof of
the conical face lemm
Local Structure Analysis in Liquid Water
Within the framework of density functional theory, the inclusion of exact
exchange and non-local van der Waals/dispersion (vdW) interactions is crucial
for predicting a microscopic structure of ambient liquid water that
quantitatively agrees with experiment. In this work, we have used the local
structure index (LSI) order parameter to analyze the local structure in such
highly accurate liquid water. At ambient conditions, the LSI
probability distribution, P(), was unimodal with most water molecules
characterized by more disordered high-density-like local environments. With
thermal excitations removed, the resultant bimodal P() in the inherent
potential energy surface (IPES) exhibited a 3:1 ratio between high- and
low-density-like molecules, with the latter forming small connected clusters
amid the predominant population. By considering the spatial correlations and
hydrogen bond network topologies water molecules with the same LSI
identities, we demonstrate that the signatures of the experimentally observed
low- (LDA) and high-density (HDA) amorphous phases of ice are present in the
IPES of ambient liquid water. Analysis of the LSI autocorrelation function
uncovered a persistence time of 4 ps---a finding consistent with the
fact that natural thermal fluctuations are responsible for transitions between
these distinct yet transient local aqueous environments in ambient liquid
water.Comment: 12 pages, 6 figure
Perfect tag identification protocol in RFID networks
Radio Frequency IDentification (RFID) systems are becoming more and more
popular in the field of ubiquitous computing, in particular for objects
identification. An RFID system is composed by one or more readers and a number
of tags. One of the main issues in an RFID network is the fast and reliable
identification of all tags in the reader range. The reader issues some queries,
and tags properly answer. Then, the reader must identify the tags from such
answers. This is crucial for most applications. Since the transmission medium
is shared, the typical problem to be faced is a MAC-like one, i.e. to avoid or
limit the number of tags transmission collisions. We propose a protocol which,
under some assumptions about transmission techniques, always achieves a 100%
perfomance. It is based on a proper recursive splitting of the concurrent tags
sets, until all tags have been identified. The other approaches present in
literature have performances of about 42% in the average at most. The
counterpart is a more sophisticated hardware to be deployed in the manufacture
of low cost tags.Comment: 12 pages, 1 figur
A dual view of the 3d Heisenberg model and the abelian projection
The Heisenberg model in 3d is studied from a dual point of view. It is shown
that it can have vortex configurations, carrying a conserved charge(U(1)
symmetry). Vortices condens in the disordered phase. A disorder parameter
\leftangle\mu\rightangle is defined dual to the magnetization \leftangle\vec
n\rightangle, which signals condensation of vortices, i.e. spontaneous
breaking of the dual U(1) symmetry. This study sheds light on the procedure
known as abelian projection in non abelian gauge theories.Comment: LateX, 15 pages, 3 figure
A Study of Holographic Renormalization Group Flows in d=6 and d=3
We present an explicit study of the holographic renormalization group (RG) in
six dimensions using minimal gauged supergravity. By perturbing the theory with
the addition of a relevant operator of dimension four one flows to a
non-supersymmetric conformal fixed point. There are also solutions describing
non-conformal vacua of the same theory obtained by giving an expectation value
to the operator. One such vacuum is supersymmetric and is obtained by using the
true superpotential of the theory. We discuss the physical acceptability of
these vacua by applying the criteria recently given by Gubser for the four
dimensional case and find that those criteria give a clear physical picture in
the six dimensional case as well. We use this example to comment on the role of
the Hamilton-Jacobi equations in implementing the RG. We conclude with some
remarks on AdS_4 and the status of three dimensional superconformal theories
from squashed solutions of M-theory.Comment: 15 pages, 5 figures, V2: minor change
Operator Counting for N=2 Chern-Simons Gauge Theories with Chiral-like Matter Fields
The localization formula of Chern-Simons quiver gauge theory on nicely
reproduces the geometric data such as volume of Sasaki-Einstein manifolds in
the large- limit, at least for vector-like models. The validity of
chiral-like models is not established yet, due to technical problems in both
analytic and numerical approaches. Recently Gulotta, Herzog and Pufu suggested
that the counting of chiral operators can be used to find the eigenvalue
distribution of quiver matrix models. In this paper we apply this method to
some vector-like or chiral-like quiver theories, including the triangular
quivers with generic Chern-Simons levels which are dual to in-homogeneous
Sasaki-Einstein manifolds . The result is consistent
with AdS/CFT and the volume formula. We discuss the implication of our
analysis.Comment: 23 pages; v2. revised version; v3. corrected typos and clarified
argument
A note on dimer models and McKay quivers
We give one formulation of an algorithm of Hanany and Vegh which takes a
lattice polygon as an input and produces a set of isoradial dimer models. We
study the case of lattice triangles in detail and discuss the relation with
coamoebas following Feng, He, Kennaway and Vafa.Comment: 25 pages, 35 figures. v3:completely rewritte
Excitonic Effects in Quantum Wires
We review the effects of Coulomb correlation on the linear and non-linear
optical properties of semiconductor quantum wires, with emphasis on recent
results for the bound excitonic states. Our theoretical approach is based on
generalized semiconductor Bloch equations, and allows full three-dimensional
multisubband description of electron-hole correlation for arbitrary confinement
profiles. In particular, we consider V- and T-shaped structures for which
significant experimental advances were obtained recently. Above band gap, a
very general result obtained by this approach is that electron-hole Coulomb
correlation removes the inverse-square-root single-particle singularity in the
optical spectra at band edge, in agreement with previous reports from purely
one-dimensional models. Strong correlation effects on transitions in the
continuum are found to persist also at high densities of photoexcited carriers.
Below bandgap, we find that the same potential- (Coulomb) to kinetic-energy
ratio holds for quite different wire cross sections and compositions. As a
consequence, we identify a shape- and barrier-independent parameter that
governs a universal scaling law for exciton binding energy with size. Previous
indications that the shape of the wire cross-section may have important effects
on exciton binding are discussed in the light of the present results.Comment: Proc. OECS-5 Conference, G\"ottingen, 1997 (To appear in Phys. Stat.
Sol. (b)
Post-test simulations for the NACIE-UP benchmark by STH codes
This paper illustrates the results obtained in the last phase of the NACIE-UP benchmark activity foreseen inside the EU SESAME Project. The purpose of this research activity, performed by system thermal–hydraulic (STH) codes, is finalized to the improvement, development and validation of existing STH codes for Heavy Liquid Metal (HLM) systems. All the participants improved their modelling of the NACIE-UP facility, respect to the initial blind simulation phase, adopting the actual experimental boundary conditions and reducing as much as possible sources of uncertainty in their numerical model. Four different STH codes were employed by the participants to the benchmark to model the NACIE-UP facility, namely: CATHARE for ENEA, ATHLET for GRS, RELAP5-3D© for the “Sapienza” University of Rome and RELAP5/Mod3.3(modified) for the University of Pisa. Three reference tests foreseen in the NACIE-UP benchmark and carried out at ENEA Brasimone Research Centre were analysed from four participants. The data from the post-test analyses, performed independently by the participant using different STH codes, were compared together and with the available experimental results and critically discussed
- …
