711 research outputs found

    The ISLANDS project I: Andromeda XVI, An Extremely Low Mass Galaxy not Quenched by Reionization

    Get PDF
    Based on data aquired in 13 orbits of HST time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its life-time star formation history, the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ~6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low mass galaxy for which the early quenching by either reionization or starburst feedback seems highly unlikely, and thus, is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the star formation history as a function of galactocentric radius, we detect a mild gradient in the star formation history: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of 9 RR Lyrae stars, 8 of which belong to And XVI. The RR Lyrae stars allow a new estimate of the distance, (m-M)0= 23.72+/-0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch.Comment: Accepted for publication on Ap

    The ISLAndS project II: The Lifetime Star Formation Histories of Six Andromeda dSphs

    Get PDF
    The Initial Star formation and Lifetimes of Andromeda Satellites (ISLAndS) project uses Hubble Space Telescope imaging to study a representative sample of six Andromeda dSph satellite companion galaxies. The main goal of the program is to determine whether the star formation histories (SFHs) of the Andromeda dSph satellites demonstrate significant statistical differences from those of the Milky Way, which may be attributable to the different properties of their local environments. Our observations reach the oldest main sequence turn-offs, allowing a time resolution at the oldest ages of ~ 1 Gyr, which is comparable to the best achievable resolution in the MW satellites. We find that the six dSphs present a variety of SFHs that are not strictly correlated with luminosity or present distance from M31. Specifically, we find a significant range in quenching times (lookback times from 9 to 6 Gyr), but with all quenching times more than ~ 6 Gyr ago. In agreement with observations of Milky Way companions of similar mass, there is no evidence of complete quenching of star formation by the cosmic UV background responsible for reionization, but the possibility of a degree of quenching at reionization cannot be ruled out. We do not find significant differences between the SFHs of the three members of the vast, thin plane of satellites and the three off-plane dSphs. The primary difference between the SFHs of the ISLAndS dSphs and Milky Way dSph companions of similar luminosities and host distances is the absence of very late quenching (< 5 Gyr ago) dSphs in the ISLAndS sample. Thus, models that can reproduce satellite populations with and without late quenching satellites will be of extreme interest.Comment: 24 pages, 11 figures, 3 tables, submitted to the Ap

    MORGOTH: incorporating horizontal branch modelling into star formation history determinations

    Get PDF
    We present a new method that incorporates the horizontal branch morphology into synthetic colour-magnitude diagram based star formation history determinations. This method, we call MORGOTH, self-consistently takes into account all the stellar evolution phases up to the early asymptothic giant branch, flexibly modelling red giant branch mass loss. We test MORGOTH on a range of synthetic populations, and find that the inclusion of the horizontal branch significantly increases the precision of the resulting star formation histories. When the main sequence turn-off is detected, MORGOTH can fit the star formation history and the red giant branch mass loss at the same time, efficiently breaking this degeneracy. As part of testing MORGOTH, we also model the observed colour-magnitude diagram of the well studied Sculptor dwarf spheroidal galaxy. We recover a new more detailed star formation history for this galaxy. Both the new star formation history and the red giant branch mass loss we determined for Sculptor with MORGOTH are in good agreement with previous analyses, thus demonstrating the power of this new approach

    Non-local heat transport in Alcator C-Mod ohmic L-mode plasmas

    Get PDF
    Non-local heat transport experiments were performed in Alcator C-Mod ohmic L-mode plasmas by inducing edge cooling with laser blow-off impurity (CaF2) injection. The non-local effect, a cooling of the edge electron temperature with a rapid rise of the central electron temperature, which contradicts the assumption of 'local' transport, was observed in low collisionality linear ohmic confinement (LOC) regime plasmas. Transport analysis shows this phenomenon can be explained either by a fast drop of the core diffusivity, or the sudden appearance of a heat pinch. In high collisionality saturated ohmic confinement (SOC) regime plasmas, the thermal transport becomes 'local': the central electron temperature drops on the energy confinement time scale in response to the edge cooling. Measurements from a high resolution imaging x-ray spectrometer show that the ion temperature has a similar behaviour as the electron temperature in response to edge cooling, and that the transition density of non-locality correlates with the rotation reversal critical density. This connection may indicate the possible connection between thermal and momentum transport, which is also linked to a transition in turbulence dominance between trapped electron modes (TEMs) and ion temperature gradient (ITG) modes. Experiments with repetitive cold pulses in one discharge were also performed to allow Fourier analysis and to provide details of cold front propagation. These modulation experiments showed in LOC plasmas that the electron thermal transport is not purely diffusive, while in SOC the electron thermal transport is more diffusive like. Linear gyrokinetic simulations suggest the turbulence outside r/a = 0.75 changes from TEM dominance in LOC plasmas to ITG mode dominance in SOC plasmas.United States. Dept. of Energy (DoE Contract No DE-FC02-99ER54512)Oak Ridge Institute for Science and Education (DOE Fusion Energy Postdoctoral Research Program

    Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC ?

    Full text link
    Due to the limited statistics so far accumulated in the Higgs boson search at the LHC, the Higgs boson property has not yet been tightly constrained and it is still allowed for the Higgs boson to decay invisibly to dark matter with a sizable branching ratio. In this work, we examine the Higgs decay to neutralino dark matter in low energy SUSY by considering three different models: the minimal supersymmetric standard model (MSSM), the next-to-minimal supersymmetric standard models (NMSSM) and the nearly minimal supersymmetric standard model (nMSSM). Under current experimental constraints at 2-sigma level (including the muon g-2 and the dark matter relic density), we scan over the parameter space of each model. Then in the allowed parameter space we calculate the branching ratio of the SM-like Higgs decay to neutralino dark matter and examine its observability at the LHC by considering three production channels: the weak boson fusion VV->h, the associated production with a Z-boson pp->hZ+X or a pair of top quarks pp->htt_bar+X. We find that in the MSSM such a decay is far below the detectable level; while in both the NMSSM and nMSSM the decay branching ratio can be large enough to be observable at the LHC.Comment: Version in JHE

    Quasi-coherent fluctuations limiting the pedestal growth on Alcator C-Mod: experiment and modelling

    Get PDF
    Performance predictions for future fusion devices rely on an accurate model of the pedestal structure. The candidate for predictive pedestal structure is EPED, and it is imperative to test the underlying hypotheses to further gain confidence for ITER projections. Here, we present experimental work testing one of the EPED hypotheses, namely the existence of a soft limit set by microinstabilities such as the kinetic ballooning mode. This work extends recent work on Alactor C-Mod (Diallo et al 2014 Phys. Rev. Lett. 112 115001), to include detailed measurements of the edge fluctuations and comparisons of edge simulation codes and experimental observations

    The Blue Straggler Population in Dwarf Galaxies

    Full text link
    In this chapter I review the recent developments regarding the study of Blue Stragglers (BSS) in dwarf galaxies. The loose density environment of dwarf galaxies resembles that of the Galactic Halo, hence it is natural to compare their common BSS properties. At the same time, it is unescapable to compare with the BSS properties in Galactic Globular clusters, which constitute the reference point for BSS studies. Admittedly, the literature on BSS in dwarf galaxies is not plentiful. The limitation is mostly due to the large distance to even the closest dwarf galaxies. Nevertheless, recent studies have allowed a deeper insight on the BSS photometric properties that are worth examining.Comment: Chapter 6, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
    corecore