29,432 research outputs found
Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics
We show for a certain class of operators and holomorphic functions
that the functional calculus is holomorphic. Using this result
we are able to prove that fractional Laplacians depend real
analytically on the metric in suitable Sobolev topologies. As an
application we obtain local well-posedness of the geodesic equation for
fractional Sobolev metrics on the space of all Riemannian metrics.Comment: 31 page
Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: A phenomenological analysis
The current uncertainty on the gluon density extracted from the global parton
analysis is large in the kinematical range of small values of the Bjorken -
variable and low values of the hard scale . An alternative to reduces this
uncertainty is the analysis of the exclusive vector meson photoproduction in
photon - hadron and hadron - hadron collisions. This process offers a unique
opportunity to constrain the gluon density of the proton, since its cross
section is proportional to the gluon density squared. In this paper we consider
current parametrizations for the gluon distribution and estimate the exclusive
vector meson photoproduction cross section at HERA and LHC using the leading
logarithmic formalism. We perform a fit of the normalization of the
cross section and the value of the hard scale for the process and demonstrate
that the current LHCb experimental data are better described by models that
assume a slow increasing of the gluon distribution at small - and low
.Comment: 8 pages, 6 figures, 1 table. Version published in European Physical
Journal
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect
ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into
spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect
ratio. In this work we investigated the energetics and dynamical aspects of
CNBs formed from rolling up CNRs. We have carried out molecular dynamics
simulations using reactive empirical bond-order potentials. Our results show
that similarly to CNSs, CNBs formation is dominated by two major energy
contribution, the increase in the elastic energy due to the bending of the
initial planar configuration (decreasing structural stability) and the
energetic gain due to van der Waals interactions of the overlapping surface of
the rolled layers (increasing structural stability). Beyond a critical diameter
value these scrolled structures can be even more stable (in terms of energy)
than their equivalent planar configurations. In contrast to CNSs that require
energy assisted processes (sonication, chemical reactions, etc.) to be formed,
CNBs can be spontaneously formed from low temperature driven processes. Long
CNBs (length of 30.0 nm) tend to exhibit self-folded racket-like
conformations with formation dynamics very similar to the one observed for long
carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled
structures. Possible synthetic routes to fabricate CNBs from graphene membranes
are also addressed
Radial dependence of line profile variability in seven O9--B0.5 stars
Massive stars show a variety of spectral variability: presence of discrete
absorption components in UV P-Cygni profiles, optical line profile variability,
X-ray variability, radial velocity modulations. Our goal is to study the
spectral variability of single OB stars to better understand the relation
between photospheric and wind variability. For that, we rely on high spectral
resolution, high signal-to-noise ratio optical spectra collected with the
spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We
investigate the variability of twelve spectral lines by means of the Temporal
Variance Spectrum (TVS). The selected lines probe the radial structure of the
atmosphere, from the photosphere to the outer wind. We also perform a
spectroscopic analysis with atmosphere models to derive the stellar and wind
properties, and to constrain the formation region of the selected lines. We
show that variability is observed in the wind lines of all bright giants and
supergiants, on a daily timescale. Lines formed in the photosphere are
sometimes variable, sometimes not. The dwarf stars do not show any sign of
variability. If variability is observed on a daily timescale, it can also (but
not always) be observed on hourly timescales, albeit with lower amplitude.
There is a very clear correlation between amplitude of the variability and
fraction of the line formed in the wind. Strong anti-correlations between the
different part of the temporal variance spectrum are observed. Our results
indicate that variability is stronger in lines formed in the wind. A link
between photospheric and wind variability is not obvious from our study, since
wind variability is observed whatever the level of photospheric variability.
Different photospheric lines also show different degrees of variability.Comment: 13 pages, 9 figures + appendix. A&A accepted. Figures degraded for
arxiv submissio
- …
