585 research outputs found

    Assessing evaluation procedures for individual researchers: the case of the Italian National Scientific Qualification

    Full text link
    The Italian National Scientific Qualification (ASN) was introduced as a prerequisite for applying for tenured associate or full professor positions at state-recognized universities. The ASN is meant to attest that an individual has reached a suitable level of scientific maturity to apply for professorship positions. A five member panel, appointed for each scientific discipline, is in charge of evaluating applicants by means of quantitative indicators of impact and productivity, and through an assessment of their research profile. Many concerns were raised on the appropriateness of the evaluation criteria, and in particular on the use of bibliometrics for the evaluation of individual researchers. Additional concerns were related to the perceived poor quality of the final evaluation reports. In this paper we assess the ASN in terms of appropriateness of the applied methodology, and the quality of the feedback provided to the applicants. We argue that the ASN is not fully compliant with the best practices for the use of bibliometric indicators for the evaluation of individual researchers; moreover, the quality of final reports varies considerably across the panels, suggesting that measures should be put in place to prevent sloppy practices in future ASN rounds

    Quantitative Analysis of the Italian National Scientific Qualification

    Full text link
    The Italian National Scientific Qualification (ASN) was introduced in 2010 as part of a major reform of the national university system. Under the new regulation, the scientific qualification for a specific role (associate or full professor) and field of study is required to apply to a permanent professor position. The ASN is peculiar since it makes use of bibliometric indicators with associated thresholds as one of the parameters used to assess applicants. Overall, more than 59000 applications were submitted, and the results have been made publicly available for a short period of time, including the values of the quantitative indicators for each applicant. The availability of this wealth of information provides an opportunity to draw a fairly detailed picture of a nation-wide evaluation exercise, and to study the impact of the bibliometric indicators on the qualification results. In this paper we provide a first account of the Italian ASN from a quantitative point of view. We show that significant differences exist among scientific disciplines, in particular with respect to the fraction of qualified applicants, that can not be easily explained. Furthermore, we describe some issues related to the definition and use of the bibliometric indicators and thresholds. Our analysis aims at drawing attention to potential problems that should be addressed by decision-makers in future ASN rounds.Comment: ISSN 1751-157

    Parallel Sort-Based Matching for Data Distribution Management on Shared-Memory Multiprocessors

    Full text link
    In this paper we consider the problem of identifying intersections between two sets of d-dimensional axis-parallel rectangles. This is a common problem that arises in many agent-based simulation studies, and is of central importance in the context of High Level Architecture (HLA), where it is at the core of the Data Distribution Management (DDM) service. Several realizations of the DDM service have been proposed; however, many of them are either inefficient or inherently sequential. These are serious limitations since multicore processors are now ubiquitous, and DDM algorithms -- being CPU-intensive -- could benefit from additional computing power. We propose a parallel version of the Sort-Based Matching algorithm for shared-memory multiprocessors. Sort-Based Matching is one of the most efficient serial algorithms for the DDM problem, but is quite difficult to parallelize due to data dependencies. We describe the algorithm and compute its asymptotic running time; we complete the analysis by assessing its performance and scalability through extensive experiments on two commodity multicore systems based on a dual socket Intel Xeon processor, and a single socket Intel Core i7 processor.Comment: Proceedings of the 21-th ACM/IEEE International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017). Best Paper Award @DS-RT 201

    A Framework for QoS-aware Execution of Workflows over the Cloud

    Full text link
    The Cloud Computing paradigm is providing system architects with a new powerful tool for building scalable applications. Clouds allow allocation of resources on a "pay-as-you-go" model, so that additional resources can be requested during peak loads and released after that. However, this flexibility asks for appropriate dynamic reconfiguration strategies. In this paper we describe SAVER (qoS-Aware workflows oVER the Cloud), a QoS-aware algorithm for executing workflows involving Web Services hosted in a Cloud environment. SAVER allows execution of arbitrary workflows subject to response time constraints. SAVER uses a passive monitor to identify workload fluctuations based on the observed system response time. The information collected by the monitor is used by a planner component to identify the minimum number of instances of each Web Service which should be allocated in order to satisfy the response time constraint. SAVER uses a simple Queueing Network (QN) model to identify the optimal resource allocation. Specifically, the QN model is used to identify bottlenecks, and predict the system performance as Cloud resources are allocated or released. The parameters used to evaluate the model are those collected by the monitor, which means that SAVER does not require any particular knowledge of the Web Services and workflows being executed. Our approach has been validated through numerical simulations, whose results are reported in this paper

    The four-dimensional on-shell three-point amplitude in spinor-helicity formalism and BCFW recursion relations

    Full text link
    Lecture notes on Poincar\'e-invariant scattering amplitudes and tree-level recursion relations in spinor-helicity formalism. We illustrate the non-perturbative constraints imposed over on-shell amplitudes by the Lorentz Little Group, and review how they completely fix the three-point amplitude involving either massless or massive particles. Then we present an introduction to tree-level BCFW recursion relations, and some applications for massless scattering, where the derived three-point amplitudes are employed.Comment: 41+2 pages, 4 figure

    Analytic pseudo-Goldstone bosons

    Get PDF
    We consider the interplay between explicit and spontaneous symmetry breaking in strongly coupled field theories. Some well-known statements, such as the Gell-Mann-Oakes-Renner relation, descend directly from the Ward identities and have thus a general relevance. Such Ward identities are recovered in gauge/gravity dual setups through holographic renormalization. In a simple paradigmatic three dimensional toy-model, we find analytic expressions for the two-point correlators which match all the quantum field theoretical expectations. Moreover, we have access to the full spectrum, which is reminiscent of linear confinement.Comment: 20 pages, 4 figures, v2 minor correction

    A Monitoring System for the BaBar INFN Computing Cluster

    Full text link
    Monitoring large clusters is a challenging problem. It is necessary to observe a large quantity of devices with a reasonably short delay between consecutive observations. The set of monitored devices may include PCs, network switches, tape libraries and other equipments. The monitoring activity should not impact the performances of the system. In this paper we present PerfMC, a monitoring system for large clusters. PerfMC is driven by an XML configuration file, and uses the Simple Network Management Protocol (SNMP) for data collection. SNMP is a standard protocol implemented by many networked equipments, so the tool can be used to monitor a wide range of devices. System administrators can display informations on the status of each device by connecting to a WEB server embedded in PerfMC. The WEB server can produce graphs showing the value of different monitored quantities as a function of time; it can also produce arbitrary XML pages by applying XSL Transformations to an internal XML representation of the cluster's status. XSL Transformations may be used to produce HTML pages which can be displayed by ordinary WEB browsers. PerfMC aims at being relatively easy to configure and operate, and highly efficient. It is currently being used to monitor the Italian Reprocessing farm for the BaBar experiment, which is made of about 200 dual-CPU Linux machines.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, LaTeX, 4 eps figures. PSN MOET00

    Fault-Tolerant Adaptive Parallel and Distributed Simulation

    Full text link
    Discrete Event Simulation is a widely used technique that is used to model and analyze complex systems in many fields of science and engineering. The increasingly large size of simulation models poses a serious computational challenge, since the time needed to run a simulation can be prohibitively large. For this reason, Parallel and Distributes Simulation techniques have been proposed to take advantage of multiple execution units which are found in multicore processors, cluster of workstations or HPC systems. The current generation of HPC systems includes hundreds of thousands of computing nodes and a vast amount of ancillary components. Despite improvements in manufacturing processes, failures of some components are frequent, and the situation will get worse as larger systems are built. In this paper we describe FT-GAIA, a software-based fault-tolerant extension of the GAIA/ART\`IS parallel simulation middleware. FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes; furthermore, FT-GAIA offers some protection against byzantine failures since synchronization messages are replicated as well, so that the receiving entity can identify and discard corrupted messages. We provide an experimental evaluation of FT-GAIA on a running prototype. Results show that a high degree of fault tolerance can be achieved, at the cost of a moderate increase in the computational load of the execution units.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2016
    corecore