6,741 research outputs found

    Discrepancies between decoherence and the Loschmidt echo

    Full text link
    The Loschmidt echo and the purity are two quantities that can provide invaluable information about the evolution of a quantum system. While the Loschmidt echo characterizes instability and sensitivity to perturbations, purity measures the loss of coherence produced by an environment coupled to the system. For classically chaotic systems both quantities display a number of -- supposedly universal -- regimes that can lead on to think of them as equivalent quantities. We study the decay of the Loschmidt echo and the purity for systems with finite dimensional Hilbert space and present numerical evidence of some fundamental differences between them.Comment: 6 pages, 3 figures. Changed title. Added 1 figure. Published version

    DATABASE DEVELOPMENT LIFE CYCLE

    Get PDF
    A software development life cycle model (SDLC) consists of a set of processes (planning, requirements, design, development, testing, installation and maintenance) defined to accomplish the task of developing a software application that is functionally correct and satisfies the user’s needs. These set of processes, when arranged in different orders, characterize different types of life cycles. When developing a database, the order of these tasks is very important to efficiently and correctly transform the user’s requirements into an operational database. These SDLCs are generally defined very broadly and are not specific for a particular type of application. In this paper the authors emphasize that there should be a SDLC that is specific to database applications. Database applications do not have the same characteristics as other software applications and thus a specific database development life cycle (DBDLC) is needed. A DBDLC should accommodate properties like scope restriction, progressive enhancement, incremental planning and pre-defined structure.Software Development, Database, DBMS, lifecycle model, traditional lifecycles

    Chemical abundances of stars with brown-dwarf companions

    Full text link
    It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of α\alpha-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [Xα_\alpha/H] and [XFe_{\rm Fe}/H] peak abundances remain at 0.1\sim -0.1~dex and +0.15\sim +0.15~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, mCsinim_C \sin i, of the most-massive substellar companion in each system, and we find a maximum in α\alpha-element as well as Fe-peak abundances at mCsini1.35±0.20m_C \sin i \sim 1.35\pm 0.20 jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.Comment: Accepted for publication in Astronomy & Astrophysic

    Stop Following Me: Stalking on College Campus

    Get PDF
    This project focuses on the topic of stalking on college and university campuses. The purpose of this project is to aid students and college professionals in the recognizing of potential stalking victims, and inform individuals about potential stalking behaviors. Another goal of this project is to help individuals in protecting themselves from and reporting such behavior, and inform those who may be or know an individual who is experiencing being stalked

    Vegetation

    Get PDF
    Due to their complexity, vegetation phenomena are not understandable without a consistent conceptual framework. A few indispensable concepts to explore the northeastern Portuguese ultramafic vegetation are set out in Tables 9 and 10. Association. The Phytosociology fundamental abstract unit is the association or associatio. The concept of association comprises an ecological-taxonomic model of the reality. Therefore, the association includes the notion of a plant community (biological information: floristic, physiognomic etc.) that occupies a particular biotope (chorologic information) where a specific set of environmental conditions can be found, i.e. the habitat (environmental information). The taxonomic element is mainly supported on the floristic composition, which is characteristic and statistically constant between associations. The development of a hierarchical syntaxonomic system (synsystem) is based above all on floristic, but also on environmental, biogeographic and physiognomic characters. Although the association concept is not a true synonym of phytocoenosis the two terms are often used interchangeably, which may result abusiv

    The lifespan method as a tool to study criticality in absorbing-state phase transitions

    Get PDF
    In a recent work, a new numerical method (the lifespan method) has been introduced to study the critical properties of epidemic processes on complex networks [Phys. Rev. Lett. \textbf{111}, 068701 (2013)]. Here, we present a detailed analysis of the viability of this method for the study of the critical properties of generic absorbing-state phase transitions in lattices. Focusing on the well understood case of the contact process, we develop a finite-size scaling theory to measure the critical point and its associated critical exponents. We show the validity of the method by studying numerically the contact process on a one-dimensional lattice and comparing the findings of the lifespan method with the standard quasi-stationary method. We find that the lifespan method gives results that are perfectly compatible with those of quasi-stationary simulations and with analytical results. Our observations confirm that the lifespan method is a fully legitimate tool for the study of the critical properties of absorbing phase transitions in regular lattices

    Phase space contraction and quantum operations

    Full text link
    We give a criterion to differentiate between dissipative and diffusive quantum operations. It is based on the classical idea that dissipative processes contract volumes in phase space. We define a quantity that can be regarded as ``quantum phase space contraction rate'' and which is related to a fundamental property of quantum channels: non-unitality. We relate it to other properties of the channel and also show a simple example of dissipative noise composed with a chaotic map. The emergence of attaractor-like structures is displayed.Comment: 8 pages, 6 figures. Changes added according to refferee sugestions. (To appear in PRA
    corecore