1,797 research outputs found
Fast Hierarchical Clustering and Other Applications of Dynamic Closest Pairs
We develop data structures for dynamic closest pair problems with arbitrary
distance functions, that do not necessarily come from any geometric structure
on the objects. Based on a technique previously used by the author for
Euclidean closest pairs, we show how to insert and delete objects from an
n-object set, maintaining the closest pair, in O(n log^2 n) time per update and
O(n) space. With quadratic space, we can instead use a quadtree-like structure
to achieve an optimal time bound, O(n) per update. We apply these data
structures to hierarchical clustering, greedy matching, and TSP heuristics, and
discuss other potential applications in machine learning, Groebner bases, and
local improvement algorithms for partition and placement problems. Experiments
show our new methods to be faster in practice than previously used heuristics.Comment: 20 pages, 9 figures. A preliminary version of this paper appeared at
the 9th ACM-SIAM Symp. on Discrete Algorithms, San Francisco, 1998, pp.
619-628. For source code and experimental results, see
http://www.ics.uci.edu/~eppstein/projects/pairs
Towards an Optimal Reconstruction of Baryon Oscillations
The Baryon Acoustic Oscillations (BAO) in the large-scale structure of the
universe leave a distinct peak in the two-point correlation function of the
matter distribution. That acoustic peak is smeared and shifted by bulk flows
and non-linear evolution. However, it has been shown that it is still possible
to sharpen the peak and remove its shift by undoing the effects of the bulk
flows. We propose an improvement to the standard acoustic peak reconstruction.
Contrary to the standard approach, the new scheme has no free parameters,
treats the large-scale modes consistently, and uses optimal filters to extract
the BAO information. At redshift of zero, the reconstructed linear matter power
spectrum leads to a markedly improved sharpening of the reconstructed acoustic
peak compared to standard reconstruction.Comment: 20 pages, 5 figures; footnote adde
Estimating CDM Particle Trajectories in the Mildly Non-Linear Regime of Structure Formation. Implications for the Density Field in Real and Redshift Space
We obtain approximations for the CDM particle trajectories starting from
Lagrangian Perturbation Theory. These estimates for the CDM trajectories result
in approximations for the density in real and redshift space, as well as for
the momentum density that are better than what standard Eulerian and Lagrangian
perturbation theory give. For the real space density, we find that our proposed
approximation gives a good cross-correlation (>95%) with the non-linear density
down to scales almost twice smaller than the non-linear scale, and six times
smaller than the corresponding scale obtained using linear theory. This allows
for a speed-up of an order of magnitude or more in the scanning of the
cosmological parameter space with N-body simulations for the scales relevant
for the baryon acoustic oscillations. Possible future applications of our
method include baryon acoustic peak reconstruction, building mock galaxy
catalogs, momentum field reconstruction.Comment: 25 pages, 11 figures; reference adde
Bayesian stochastic blockmodeling
This chapter provides a self-contained introduction to the use of Bayesian
inference to extract large-scale modular structures from network data, based on
the stochastic blockmodel (SBM), as well as its degree-corrected and
overlapping generalizations. We focus on nonparametric formulations that allow
their inference in a manner that prevents overfitting, and enables model
selection. We discuss aspects of the choice of priors, in particular how to
avoid underfitting via increased Bayesian hierarchies, and we contrast the task
of sampling network partitions from the posterior distribution with finding the
single point estimate that maximizes it, while describing efficient algorithms
to perform either one. We also show how inferring the SBM can be used to
predict missing and spurious links, and shed light on the fundamental
limitations of the detectability of modular structures in networks.Comment: 44 pages, 16 figures. Code is freely available as part of graph-tool
at https://graph-tool.skewed.de . See also the HOWTO at
https://graph-tool.skewed.de/static/doc/demos/inference/inference.htm
Advantageous grain boundaries in iron pnictide superconductors
High critical temperature superconductors have zero power consumption and
could be used to produce ideal electric power lines. The principal obstacle in
fabricating superconducting wires and tapes is grain boundaries-the
misalignment of crystalline orientations at grain boundaries, which is
unavoidable for polycrystals, largely deteriorates critical current density.
Here, we report that High critical temperature iron pnictide superconductors
have advantages over cuprates with respect to these grain boundary issues. The
transport properties through well-defined bicrystal grain boundary junctions
with various misorientation angles (thetaGB) were systematically investigated
for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal
substrates. The critical current density through bicrystal grain boundary
(JcBGB) remained high (> 1 MA/cm2) and nearly constant up to a critical angle
thetac of ~9o, which is substantially larger than the thetac of ~5o for YBCO.
Even at thetaGB > thetac, the decay of JcBGB was much smaller than that of
YBCO.Comment: to appear in Nature Communication
On Loops in Inflation II: IR Effects in Single Clock Inflation
In single clock models of inflation the coupling between modes of very
different scales does not have any significant dynamical effect during
inflation. It leads to interesting projection effects. Larger and smaller modes
change the relation between the scale a mode of interest will appear in the
post-inflationary universe and will also change the time of horizon crossing of
that mode. We argue that there are no infrared projection effects in physical
questions, that there are no effects from modes of longer wavelength than the
one of interest. These potential effects cancel when computing fluctuations as
a function of physically measurable scales. Modes on scales smaller than the
one of interest change the mapping between horizon crossing time and scale. The
correction to the mapping computed in the absence of fluctuations is enhanced
by a factor N_e, the number of e-folds of inflation between horizon crossing
and reheating. The new mapping is stochastic in nature but its variance is not
enhanced by N_e.Comment: 13 pages, 1 figure; v2: JHEP published version, added minor comments
and reference
Exploring CP Violation through Correlations in B --> pi K, B_d --> pi^+pi^-, B_s --> K^+K^- Observable Space
We investigate allowed regions in observable space of B --> pi K, B_d -->
pi^+pi^- and B_s --> K^+K^- decays, characterizing these modes in the Standard
Model. After a discussion of a new kind of contour plots for the
system, we focus on the mixing- induced and direct CP asymmetries of the decays
B_d --> pi^+pi^- and B_s--> K^+K^-. Using experimental information on the
CP-averaged B_d --> pi^{+/-}K^{+/-} and B_d --> pi^+pi^- branching ratios, the
relevant hadronic penguin parameters can be constrained,implying certain
allowed regions in observable space. In the case of B_d --> pi^+pi^-, an
interesting situation arises now in view of the recent B-factory measurements
of CP violation in this channel, allowing us to obtain new constraints on the
CKM angle gamma as a function of the B^0_d--\bar{B^0_d} mixing phase
phi_d=2beta, which is fixed through A_{CP}^{mix}(B_d --> J/psi K_S) up to a
twofold ambiguity. If we assume that A_{CP}^{mix}(B_d --> pi^+pi^-) is
positive, as indicated by recent Belle data, and that phi_d is in agreement
with the ``indirect'' fits of the unitarity triangle, also the corresponding
values for gamma around 60 degrees can be accommodated. On the other hand, for
the second solution of phi_d, we obtain a gap around gamma ~ 60 degrees. The
allowed region in the space of A_{CP}^{mix}(B_s --> K^+K^-) and
A_{CP}^{dir}(B_s --> K^+K^-) is very constrained in the Standard Model, thereby
providing a narrow target range for run II of the Tevatron and the experiments
of the LHC era.Comment: 34 pages, LaTeX, 12 figures. More detailed introduction and a few
Comments added, conclusions unchanged. To appear in Phys. Rev.
Análise química de rochas por espectrometria de emissão óptica com plasma induzido: um pote de ouro ou apenas mais um caso de interferências espectrais?
Thin Film Growth and Device Fabrication of Iron-Based Superconductors
Iron-based superconductors have received much attention as a new family of
high-temperature superconductors owing to their unique properties and distinct
differences from cuprates and conventional superconductors. This paper reviews
progress in thin film research on iron-based superconductors since their
discovery for each of five material systems with an emphasis on growth,
physical properties, device fabrication, and relevant bulk material properties.Comment: To appear in J. Phys. Soc. Jp
Dimensionless Coupling of Bulk Scalars at the LHC
We identify the lowest-dimension interaction which is possible between
Standard Model brane fields and bulk scalars in 6 dimensions. The
lowest-dimension interaction is unique and involves a trilinear coupling
between the Standard Model Higgs and the bulk scalar. Because this interaction
has a dimensionless coupling, it depends only logarithmically on ultraviolet
mass scales and heavy physics need not decouple from it. We compute its
influence on Higgs physics at ATLAS and identify how large a coupling can be
detected at the LHC. Besides providing a potentially interesting signal in
Higgs searches, such couplings provide a major observational constraint on 6D
large-extra-dimensional models with scalars in the bulk.Comment: 20 page
- …
