9,715 research outputs found
Large N Expansion and Softly Broken Supersymmetry
We examine the supersymmetric non-linear O(N) sigma model with a soft
breaking term. In two dimensions, we found that the mass difference between
supersymmetric partner fields vanishes accidentally. In three dimensions, the
mass difference is observed but O(N) symmetry is always broken also in the
strong coupling region.Comment: Plain Latex(8pages), No Figur
Q ball inflation
We show that inflation can occur in the core of a Q-ball.Comment: 11 pages, latex2e, no figure, references added, final version to
appear in PR
String production after angled brane inflation
We describe string production after angled brane inflation. First, we point
out that there was a discrepancy in previous discussions. The expected tension
of the cosmic string calculated from the four-dimensional effective Lagrangian
did not match the one obtained in the brane analysis. In the previous analysis,
the cosmic string is assumed to correspond to the lower-dimensional daughter
brane, which wraps the same compactified space as the original mother brane. In
this case, however, the tension of the daughter brane cannot depend on the
angle (\theta). On the other hand, from the analysis of the effective
Lagrangian for tachyon condensation, it is easy to see that the tension of the
cosmic string must be proportional to \theta, when \theta << 1. This is an
obvious discrepancy that must be explained by consideration of the explicit
brane dynamics. In this paper, we will solve this problem by introducing a
simple idea. We calculate the tension of the string in the two cases, which
matches precisely. The cosmological constraint for angled inflation is relaxed,
because the expected tension of the cosmic string becomes smaller than the one
obtained in previous arguments, by a factor of \theta.Comment: 13pages, 3 figures, typos correcte
Hybridized Affleck-Dine baryogenesis
We propose a novel scenario for Affleck-Dine baryogenesis in the braneworld,
considering the hybrid potential for the Affleck-Dine field. Destabilization of
the flat direction is not due to the Hubble parameter, but is induced by a
trigger field. The moduli for the brane distance plays the role of the trigger
field. Q-balls are unstable in models with large extra dimensions.Comment: 10pages, plain latex2e, references added, to appear in PR
Effects of hole-doping on the magnetic ground state and excitations in the edge-sharing CuO chains of CaYCuO
Neutron scattering experiments were performed on the undoped and hole-doped
CaYCuO, which consists of ferromagnetic edge-sharing
CuO chains. It was previously reported that in the undoped
CaYCuO there is an anomalous broadening of spin-wave
excitations along the chain, which is caused mainly by the antiferromagnetic
interchain interactions [Matsuda , Phys. Rev. B 63, 180403(R)
(2001)]. A systematic study of temperature and hole concentration dependencies
of the magnetic excitations shows that the magnetic excitations are softened
and broadened with increasing temperature or doping holes irrespective of
direction. The broadening is larger at higher . A characteristic feature is
that hole-doping is much more effective to broaden the excitations along the
chain. It is also suggested that the intrachain interaction does not change so
much with increasing temperature or doping although the anisotropic interaction
and the interchain interaction are reduced. In the spin-glass phase (=1.5)
and nearly disordered phase (=1.67) the magnetic excitations are much
broadened in energy and . It is suggested that the spin-glass phase
originates from the antiferromagnetic clusters, which are caused by the hole
disproportionation.Comment: 8 pages, submitted to Phys. Rev.
Evolution of Paramagnetic Quasiparticle Excitations Emerged in the High-Field Superconducting Phase of CeCoIn5
We present In NMR measurements in a novel thermodynamic phase of CeCoIn5 in
high magnetic field, where exotic superconductivity coexists with the
incommensurate spin-density wave order. We show that the NMR spectra in this
phase provide direct evidence for the emergence of the spatially distributed
normal quasiparticle regions. The quantitative analysis for the field evolution
of the paramagnetic magnetization and newly-emerged low-energy quasiparticle
density of states is consistent with the nodal plane formation, which is
characterized by an order parameter in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state. The NMR spectra also suggest that the spatially uniform
spin-density wave is induced in the FFLO phase.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
- …
