1,702 research outputs found
Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness
Static and dynamic frictional phenomena at the interface with random
impurities are investigated in a two-chain model with incommensurate structure.
Static frictional force is caused by the impurity pinning and/or by the pinning
due to the regular potential, which is responsible for the breaking of
analyticity transition for impurity-free cases. It is confirmed that the static
frictional force is always finite in the presence of impurities, in contrast to
the impurity-free system. The nature of impurity pinning is discussed in
connection with that in density waves. The kinetic frictional force of a steady
sliding state is also investigated numerically. The relationship between the
sliding velocity dependence of the kinetic frictional force and the strength of
impurity potential is discussed.Comment: RevTex, 14 pages, 6 PostScript figures, to appear in Phys. Rev.
Dynamical frictional phenomena in an incommensurate two-chain model
Dynamical frictional phenomena are studied theoretically in a two-chain model
with incommensurate structure. A perturbation theory with respect to the
interchain interaction reveals the contributions from phonons excited in each
chain to the kinetic frictional force. The validity of the theory is verified
in the case of weak interaction by comparing with numerical simulation. The
velocity and the interchain interaction dependences of the lattice structure
are also investigated. It is shown that peculiar breaking of analyticity states
appear, which is characteristic to the two-chain model. The range of the
parameters in which the two-chain model is reduced to the Frenkel-Kontorova
model is also discussed.Comment: RevTex, 9 pages, 7 PostScript figures, to appear in Phys. Rev.
Pressure-Driven Quantum Criticality and T/H Scaling in the Icosahedral Au-Al-Yb Approximant
We report on ac magnetic susceptibility measurements under pressure of the
Au-Al-Yb alloy, a crystalline approximant to the icosahedral quasicrystal that
shows unconventional quantum criticality. In describing the susceptibility as
, we find that
decreases with increasing pressure and vanishes to zero at the critical
pressure GPa, with unchanged. We
suggest that this quantum criticality emerges owing to critical valence
fluctuations. Above , the approximant undergoes a magnetic
transition at mK. These results are contrasted with the fact
that, in the quasicrystal, the quantum criticality is robust against the
application of pressure. The applicability of the so-called scaling to
the approximant is also discussed.Comment: 11 pages, 5 figure
Crossover from 2-dimensional to 1-dimensional collective pinning in NbSe3
We have fabricated NbSe structures with widths comparable to the
Fukuyama-Lee-Rice phase-coherence length. For samples already in the
2-dimensional pinning limit, we observe a crossover from 2-dimensional to
1-dimensional collective pinning when the crystal width is less than 1.6
m, corresponding to the phase-coherence length in this direction. Our
results show that surface pinning is negligible in our samples, and provide a
means to probe the dynamics of single domains giving access to a new regime in
charge-density wave physics.Comment: 4 pages, 2 figures, and 1 table. Accepted for publication in Physical
Review
Friction, order, and transverse pinning of a two-dimensional elastic lattice under periodic and impurity potentials
Frictional phenomena of two-dimensional elastic lattices are studied
numerically based on a two-dimensional Frenkel-Kontorova model with impurities.
It is shown that impurities can assist the depinning. We also investigate
anisotropic ordering and transverse pinning effects of sliding lattices, which
are characteristic of the moving Bragg glass state and/or transverse glass
state. Peculiar velocity dependence of the transverse pinning is observed in
the presence of both periodic and random potentials and discussed in the
relation with growing order and discommensurate structures.Comment: RevTeX, 4 pages, 5 figures. to appear in Phys. Rev. B Rapid Commu
Effect of suppression of local distortion on magnetic, electrical and thermal transport properties of Cr substituted bi-layer manganite LaSrMnO
We have investigated magnetic, electrical and thermal transport properties
(Seebeck effect and thermal conductivity) of
LaSrMnCrO polycrystalline samples (=0.1, 0.2, 0.4
and 0.6). The Cr substitution for Mn sites causes a removal of
orbital of -electron resulting in a volume shrinkage of
lattice. Magnetic measurements reveal the appearance of a glassy behavior for
Cr-doped samples, accompanied by both a collapse of the A-type
antiferromagnetic structure and the growth of ferromagnetic clusters. Cr-doping
effect on electrical transport strongly enhances an insulating behavior over a
wide range of temperature, while it suppresses a local minimum of
thermoelectric power at lower temperatures. The phonon thermal conduction
gradually rises with increasing Cr content, which is contradictory to a typical
impurity effect on thermal conductivity. We attribute this to a suppression of
local lattice distortion through the introduction of Jahn-Teller inactive ions
of Cr.Comment: 8 pages, 9figure
Theoretical Study of Friction: A Case of One-Dimensional Clean Surfaces
A new method has been proposed to evaluate the frictional force in the
stationary state. This method is applied to the 1-dimensional model of clean
surfaces. The kinetic frictional force is seen to depend on velocity in
general, but the dependence becomes weaker as the maximum static frictional
force increases and in the limiting case the kinetic friction gets only weakly
dependent on velocity as described by one of the laws of friction. It is also
shown that there is a phase transition between state with vanishing maximum
static frictional force and that with finite one. The role of randomness at the
interface and the relation to the impurity pinning of the sliding
Charge-Density-Wave are discussed. to appear in Phys.Rev.B. abstract only. Full
text is available upon request. E-mail: [email protected]: 2 pages, Plain TEX, OUCMT-94-
- …
