3,533 research outputs found
Cultural robotics : The culture of robotics and robotics in culture
Copyright 2013 Samani et al.; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedIn this paper, we have investigated the concept of "Cultural Robotics" with regard to the evolution o social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robot and humans in the futurePeer reviewe
Which activities threaten independent living of elderly when becoming problematic : inspiration for meaningful service robot functionality
Purpose: In light of the increasing elderly population and the growing demand for home care, the potential of robot support is given increasing attention. In this paper, an inventory of activities was made that threaten independent living of elderly when becoming problematic. Results will guide the further development of an existing service robot, the Care-O-bot®. Method: A systematic literature search of PubMed was performed, focused on the risk factors for institutionalization. Additionally, focus group sessions were conducted in the Netherlands, United Kingdom and France. In these focus group sessions, problematic activities threatening the independence of elderly people were discussed. Three separate target groups were included in the focus group sessions: (1) elderly persons (n = 41), (2) formal caregivers (n = 40) and (3) informal caregivers (n = 32). Results: Activities within the International Classification of Functioning domains mobility, self-care, and interpersonal interaction and relationships were found to be the most problematic. Conclusions: A distinct set of daily activities was identified that may threaten independent living, but no single activity could be selected as the main activity causing a loss of independence as it is often a combination of problematic activities that is person-specific. Supporting the problematic activities need not involve a robotic solution Read More: http://informahealthcare.com/doi/abs/10.3109/17483107.2013.840861Peer reviewe
Accretion Disc Theory: From the Standard Model Until Advection
Accretion disc theory was first developed as a theory with the local heat
balance, where the whole energy produced by a viscous heating was emitted to
the sides of the disc. One of the most important new invention of this theory
was a phenomenological treatment of the turbulent viscosity, known as ''alpha''
prescription, when the (r) component of the stress tensor was
approximated by ( P) with a unknown constant . This
prescription played the role in the accretion disc theory as well important as
the mixing-length theory of convection for stellar evolution. Sources of
turbulence in the accretion disc are discussed, including nonlinear
hydrodynamical turbulence, convection and magnetic field role. In parallel to
the optically thick geometrically thin accretion disc models, a new branch of
the optically thin accretion disc models was discovered, with a larger
thickness for the same total luminosity. The choice between these solutions
should be done of the base of a stability analysis. The ideas underlying the
necessity to include advection into the accretion disc theory are presented and
first models with advection are reviewed. The present status of the solution
for a low-luminous optically thin accretion disc model with advection is
discussed and the limits for an advection dominated accretion flows (ADAF)
imposed by the presence of magnetic field are analysed.Comment: Roceeding of the Int. Workshop "Observational Evidence for Black
Holes in the Universe". Calcutta, 11-17 January 1998. Kluwer Acad. Pu
Searching for faces differs from categorization: Evidence from scenes and eye movements
This study examined whether the detection of frontal, ¾ and profile face views differs from their categorization as faces. Experiment 1 compared three tasks that required observers to determine the presence or absence of a face but varied in the extent to which they had to search for faces in simple displays and small or large scenes to make this decision. Performance was equivalent for all face views in simple displays and small scenes, but was notably slower for profile views when this required the search for faces in extended scene displays. This search effect was confirmed in Experiment 2, which compared observers’ eye movements with their response times to faces in visual scenes. These results demonstrate that the categorization of faces at fixation is dissociable from the detection of faces in space. Consequently, we suggest that face detection should be studied with extended visual displays, such as natural scenes
The classical origin of quantum affine algebra in squashed sigma models
We consider a quantum affine algebra realized in two-dimensional non-linear
sigma models with target space three-dimensional squashed sphere. Its affine
generators are explicitly constructed and the Poisson brackets are computed.
The defining relations of quantum affine algebra in the sense of the Drinfeld
first realization are satisfied at classical level. The relation to the
Drinfeld second realization is also discussed including higher conserved
charges. Finally we comment on a semiclassical limit of quantum affine algebra
at quantum level.Comment: 25 pages, 2 figure
On the classical equivalence of monodromy matrices in squashed sigma model
We proceed to study the hybrid integrable structure in two-dimensional
non-linear sigma models with target space three-dimensional squashed spheres. A
quantum affine algebra and a pair of Yangian algebras are realized in the sigma
models and, according to them, there are two descriptions to describe the
classical dynamics 1) the trigonometric description and 2) the rational
description, respectively. For every description, a Lax pair is constructed and
the associated monodromy matrix is also constructed. In this paper we show the
gauge-equivalence of the monodromy matrices in the trigonometric and rational
description under a certain relation between spectral parameters and the
rescalings of sl(2) generators.Comment: 32pages, 3figures, references added, introduction and discussion
sections revise
Quantum magnetism and criticality
Magnetic insulators have proved to be fertile ground for studying new types
of quantum many body states, and I survey recent experimental and theoretical
examples. The insights and methods transfer also to novel superconducting and
metallic states. Of particular interest are critical quantum states, sometimes
found at quantum phase transitions, which have gapless excitations with no
particle- or wave-like interpretation, and control a significant portion of the
finite temperature phase diagram. Remarkably, their theory is connected to
holographic descriptions of Hawking radiation from black holes.Comment: 39 pages, 10 figures, review article for non-specialists; (v2) added
clarifications and references; (v3) minor corrections; (v4) added footnote on
hydrodynamic long-time tail
Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8+ T cells during vaccine immunotherapy
Background: Dendritic cells (DCs) mount tumor-associated antigens (TAAs), and the double-stranded RNA adjuvant Poly(I:C) stimulates Toll-like receptor 3 (TLR3) signal in DC, which in turn induces type I interferon (IFN) and interleukin-12 (IL-12), then cross-primes cytotoxic T lymphocytes (CTLs). Proliferation of CTLs correlates with tumor regression. How these potent cells expand with high quality is crucial to the outcome of CTL therapy. However, good markers reflecting the efficacy of DC-target immunotherapy have not been addressed. Methods: Using an EG7 (ovalbumin, OVA-positive) tumor-implant mouse model, we examined what is a good marker for active CTL induction in treatment with Poly(I:C)/OVA. Results: Simultaneous administration of Poly(I:C) and antigen (Ag) OVA significantly increased a minor population of CD8+ T cells, that express CD11c in lymphoid and tumor sites. The numbers of the CD11c+ CD8+ T cells correlated with those of induced Ag-specific CD8+ T cells and tumor regression. The CD11c+ CD8+ T cell moiety was characterized by its high killing activity and IFN-γ-producing ability, which represent an active phenotype of the effector CTLs. Not only a TLR3-specific (TICAM-1-dependent) signal but also TLR2 (MyD88) signal in DC triggered the expansion of CD11c+ CD8+ T cells in tumor-bearing mice. Notably, human CD11c+ CD8+ T cells also proliferated in peripheral blood mononuclear cells (PBMC) stimulated with cytomegalovirus (CMV) Ag. Conclusions: CD11c expression in CD8+ T cells reflects anti-tumor CTL activity and would be a marker for immunotherapeutic efficacy in mouse models and probably cancer patients as well
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms
© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
- …
