22,725 research outputs found

    Hierarchical Role-Based Access Control with Homomorphic Encryption for Database as a Service

    Full text link
    Database as a service provides services for accessing and managing customers data which provides ease of access, and the cost is less for these services. There is a possibility that the DBaaS service provider may not be trusted, and data may be stored on untrusted server. The access control mechanism can restrict users from unauthorized access, but in cloud environment access control policies are more flexible. However, an attacker can gather sensitive information for a malicious purpose by abusing the privileges as another user and so database security is compromised. The other problems associated with the DBaaS are to manage role hierarchy and secure session management for query transaction in the database. In this paper, a role-based access control for the multitenant database with role hierarchy is proposed. The query is granted with least access privileges, and a session key is used for session management. The proposed work protects data from privilege escalation and SQL injection. It uses the partial homomorphic encryption (Paillier Encryption) for the encrypting the sensitive data. If a query is to perform any operation on sensitive data, then extra permissions are required for accessing sensitive data. Data confidentiality and integrity are achieved using the role-based access control with partial homomorphic encryption.Comment: 11 Pages,4 figures, Proceedings of International Conference on ICT for Sustainable Developmen

    DIRBE Minus 2MASS: Confirming the CIRB in 40 New Regions at 2.2 and 3.5 Microns

    Full text link
    With the release of the 2MASS All-Sky Point Source Catalog, stellar fluxes from 2MASS are used to remove the contribution due to Galactic stars from the intensity measured by DIRBE in 40 new regions in the North and South Galactic polar caps. After subtracting the interplanetary and Galactic foregrounds, a consistent residual intensity of 14.69 +/- 4.49 kJy/sr at 2.2 microns is found. Allowing for a constant calibration factor between the DIRBE 3.5 microns and the 2MASS 2.2 microns fluxes, a similar analysis leaves a residual intensity of 15.62 +/- 3.34 kJy/sr at 3.5 microns. The intercepts of the DIRBE minus 2MASS correlation at 1.25 microns show more scatter and are a smaller fraction of the foreground, leading to a still weak limit on the CIRB of 8.88 +/- 6.26 kJy/sr (1 sigma).Comment: 25 pages LaTeX, 10 figures, 5 tables; Version accepted by the ApJ. Includes minor changes to the text including further discussion of zodiacal light issues and the allowance for variable stars in computing uncertainties in the stellar contribution to the DIRBE intensitie

    Functional relations for zeta-functions of weight lattices of Lie groups of type A3A_3

    Full text link
    We study zeta-functions of weight lattices of compact connected semisimple Lie groups of type A3A_3. Actually we consider zeta-functions of SU(4), SO(6) and PU(4), and give some functional relations and new classes of evaluation formulas for them.Comment: 25 Page

    Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity

    Get PDF
    Using an isothermal MHD code, we have performed three-dimensional, high-resolution simulations of the Parker instability. The initial equilibrium system is composed of exponentially-decreasing isothermal gas and magnetic field (along the azimuthal direction) under a uniform gravity. The evolution of the instability can be divided into three phases: linear, nonlinear, and relaxed. During the linear phase, the perturbations grow exponentially with a preferred scale along the azimuthal direction but with smallest possible scale along the radial direction, as predicted from linear analyses. During the nonlinear phase, the growth of the instability is saturated and flow motion becomes chaotic. Magnetic reconnection occurs, which allows gas to cross field lines. This, in turn, results in the redistribution of gas and magnetic field. The system approaches a new equilibrium in the relaxed phase, which is different from the one seen in two-dimensional works. The structures formed during the evolution are sheet-like or filamentary, whose shortest dimension is radial. Their maximum density enhancement factor relative to the initial value is less than 2. Since the radial dimension is too small and the density enhancement is too low, it is difficult to regard the Parker instability alone as a viable mechanism for the formation of giant molecular clouds.Comment: 8 pages of text, 4 figures (figure 2 in degraded gif format), to appear in The Astrophysical Journal Letters, original quality figures available via anonymous ftp at ftp://ftp.msi.umn.edu/pub/users/twj/parker3d.uu or ftp://canopus.chungnam.ac.kr/ryu/parker3d.u

    Strong Turbulence in the Cool Cores of Galaxy Clusters: Can Tsunamis Solve the Cooling Flow Problem?

    Full text link
    Based on high-resolution two-dimensional hydrodynamic simulations, we show that the bulk gas motions in a cluster of galaxies, which are naturally expected during the process of hierarchical structure formation of the universe, have a serous impact on the core. We found that the bulk gas motions represented by acoustic-gravity waves create local but strong turbulence, which reproduces the complicated X-ray structures recently observed in cluster cores. Moreover, if the wave amplitude is large enough, they can suppress the radiative cooling of the cores. Contrary to the previous studies, the heating is operated by the turbulence, not weak shocks. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.Comment: Movies are available at http://th.nao.ac.jp/tsunami/index.ht

    Continuum-discretized coupled-channels method for four-body breakup reactions

    Full text link
    Development of the method of CDCC (Continuum-Discretized Coupled-Channels) from the level of three-body CDCC to that of four-body CDCC is reviewed. Introduction of the pseudo-state method based on the Gaussian expansion method for discretizing the continuum states of two-body and three-body projectiles plays an essential role in the development. Furthermore, introduction of the complex-range Gaussian basis functions is important to improve the CDCC for nuclear breakup so as to accomplish that for Coulomb and nuclear breakup. A successful application of the four-body CDCC to 6^6He+12^{12}C scattering at 18 and 229.8 MeV is reported.Comment: Latex file of revtex4 class, 14 pages, 10 figures. A talk given at the Workshop on Reaction Mechanisms for Rare Isotope Beams, Michigan State University, March 9-12, 2005 (to appear in an AIP Conference Proceedings

    Accretion flows: the Role of the Outer Boundary Condition

    Get PDF
    We investigate the influences of the outer boundary conditions(OBCs) on the structure of an optically thin accretion flow. We find that OBC plays an important role in determining the topological structure and the profiles of the surface density and temperature of the solution, therefore it should be regarded as a new parameter in the accretion disk model.Comment: 9 pages, 2 figures, to appear in ApJ Letters, Vol. 521, L5

    Dynamo activities driven by magneto-rotational instability and Parker instability in galactic gaseous disk

    Full text link
    We carried out global three-dimensional magneto-hydrodynamic simulations of dynamo activities in galactic gaseous disks without assuming equatorial symmetry. Numerical results indicate the growth of azimuthal magnetic fields non-symmetric to the equatorial plane. As magneto-rotational instability (MRI) grows, the mean strength of magnetic fields is amplified until the magnetic pressure becomes as large as 10% of the gas pressure. When the local plasma β\beta (=pgas/pmag = p_{\rm gas}/p_{\rm mag}) becomes less than 5 near the disk surface, magnetic flux escapes from the disk by Parker instability within one rotation period of the disk. The buoyant escape of coherent magnetic fields drives dynamo activities by generating disk magnetic fields with opposite polarity to satisfy the magnetic flux conservation. The flotation of the azimuthal magnetic flux from the disk and the subsequent amplification of disk magnetic field by MRI drive quasi-periodic reversal of azimuthal magnetic fields in timescale of 10 rotation period. Since the rotation speed decreases with radius, the interval between the reversal of azimuthal magnetic fields increases with radius. The rotation measure computed from the numerical results shows symmetry corresponding to a dipole field.Comment: 30 pages, 10 figure, accepted for publication in Ap

    Spin-Hall effect in triplet chiral superconductors and graphene

    Get PDF
    We study spin-Hall effects in time-reversal symmetry (TRS) broken systems such as triplet chiral superconductors and TRS preserved ones such as graphene. For chiral triplet superconductors, we show that the edge states carry a quantized spin-Hall current in response to an applied Zeeman magnetic field BB along the d{\bf d} vector \cite{leggett1}, whereas the edge spin-current for Bd{\bf B} \perp {\bf d} is screened by the condensate. We also derive the bulk spin-Hall current for chiral triplet superconductors for arbitrary relative orientation of B{\bf B} and d{\bf d} and discuss its relation with the edge spin-current. For TRS invariant system graphene, we show that the bulk effective action, unlike its TRS broken counterparts, does not support a SU(2) Hopf term but allows a crossed Hopf term in the presence of an external electromagnetic field, which yields a quantized bulk spin-Hall current in response to an electric field. We also present an analytical solution of the edge problem for armchair edges of graphene and contrast the properties of these edge states with their time reversal symmetry broken counterparts in chiral superconductors. We propose possible experiments to test our results.Comment: v2; minor changes, additional ref

    Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Get PDF
    We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab-initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current--voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.Comment: 10 pages; 4 figures, 2 SI figure
    corecore