14,832 research outputs found
Fusion of twisted representations
The comultiplication formula for fusion products of untwisted representations
of the chiral algebra is generalised to include arbitrary twisted
representations. We show that the formulae define a tensor product with
suitable properties, and determine the analogue of Zhu's algebra for arbitrary
twisted representations.
As an example we study the fusion of representations of the Ramond sector of
the N=1 and N=2 superconformal algebra. In the latter case, certain subtleties
arise which we describe in detail.Comment: 24 pages, LATE
A Systems Biology Approach towards Deciphering the Unfolded Protein Response in Huntington's Disease
Although the disease causing gene huntingtin has been known for some time, the exact cause of neuronal cell death during _Huntington's disease_ (HD) remains unknown. One potential mechanism contributing to the massive loss of neurons in HD brains might be the _Unfolded Protein Response_ (UPR) which is activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). As an adaptive response, UPR upregulates transcription of chaperones, temporarily attenuating new translation and activates protein degradation via the proteasome. However, at high levels of ER stress, UPR signalling can contribute to neuronal apoptosis.

Our primary aims include (a) construction of the UPR signalling network, (b) curation and bioinformatical identification of UPR target genes and finally (c) examination of HD gene expression data sets for UPR transcriptional signatures and differential regulation of UPR pathways.

The UPR signalling pathway is reconstructed based on literature review and using the "Unified Interactome database":http://www.unihi.org. Lists of UPR target genes detected by previous experiments or as predicted by computational analysis are compiled. This allows us to perform enrichment analysis for differential HD gene expression and to assess whether UPR expression signatures are prominent during HD pathogenesis.

Results: The canonical UPR pathway is complemented with additional protein interaction data allowing us to assess its embedding into the cellular context and to identify potential modifiers as well as novel drug targets.

Conclusions: The in depth systems biology analysis can give us valuable insights about the involvement of the UPR in HD.

The Unfolded Protein Response and its potential role in Huntington's disease
Huntington's disease (HD) is a progressive, neurodegenerative disease with fatal outcome. Although the disease-causing gene (huntingtin) has been known for some time, the exact cause of neuronal cell death is still unknown. One potential mechanism contributing to the massive loss of neurons in the brain of HD patients might be the unfolded protein response (UPR), which is activated by accumulation of misfolded proteins in the endoplasmatic reticulum (ER). As an adaptive response to counter-balance accumulation of un- or misfolded proteins, the UPR upregulates transcription of chaperones, temporarily attenuates new translation, and activates protein degradation via the proteasome. However, it is known that persistent ER stress and activated UPR can cause cell death by triggering of apoptosis. Nevertheless, the evidence linking UPR with HD progression remains inconclusive. Here, we present first analyses of UPR activation during HD based on available expression data. To elucidate the potential role of UPR as a disease-relevant process, we examine its connection to cell death and inflammatory processes. Due to the complexity of these molecular mechanisms, a systems biology approach was pursued
Intonation in unaccompanied singing: Accuracy, drift, and a model of reference pitch memory
Copyright 2014 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.
The following article appeared in J. Acoust. Soc. Am. 136, 401 (2014) and may be found at http://dx.doi.org/10.1121/1.4881915
The Incidence and Clinical Relevance of Graft Hypertrophy After Matrix-Based Autologous Chondrocyte Implantation
Background: Graft hypertrophy is the most common complication of periosteal autologous chondrocyte implantation (p-ACI).
Purpose: The aim of this prospective study was to analyze the development, the incidence rate, and the persistence of graft hypertrophy after matrix-based autologous chondrocyte implantation (mb-ACI) in the knee joint within a 2-year postoperative course.
Study Design: Case series; Level of evidence, 4.
Methods: Between 2004 and 2007, a total of 41 patients with 44 isolated cartilage defects of the knee were treated with the mb-ACI technique. The mean age of the patients was 35.8 years (standard deviation [SD], 11.3 years), and the mean body mass index was 25.9 (SD, 4.2; range, 19-35.3). The cartilage defects were arthroscopically classified as Outerbridge grades III and IV. The mean area of the cartilage defect measured 6.14 cm2 (SD, 2.3 cm2). Postoperative clinical and magnetic resonance imaging (MRI) examinations were conducted at 3, 6, 12, and 24 months to analyze the incidence and course of the graft.
Results: Graft hypertrophy developed in 25% of the patients treated with mb-ACI within a postoperative course of 1 year; 16% of the patients developed hypertrophy grade 2, and 9% developed hypertrophy grade 1. Graft hypertrophy occurred primarily in the first 12 months and regressed in most cases within 2 years. The International Knee Documentation Committee (IKDC) and visual analog scale (VAS) scores improved during the postoperative follow-up time of 2 years. There was no difference between the clinical results regarding the IKDC and VAS pain scores and the presence of graft hypertrophy.
Conclusion: The mb-ACI technique does not lead to graft hypertrophy requiring treatment as opposed to classic p-ACI. The frequency of occurrence of graft hypertrophy after p-ACI and mb-ACI is comparable. Graft hypertrophy can be considered as a temporary excessive growth of regenerative cartilage tissue rather than a true graft hypertrophy. It is therefore usually not a persistent or systematic complication in the treatment of circumscribed cartilage defects with mb-ACI
Nonequilibrium Magnetization Dynamics of Nickel
Ultrafast magnetization dynamics of nickel has been studied for different
degrees of electronic excitation, using pump-probe second-harmonic generation
with 150 fs/800 nm laser pulses of various fluences. Information about the
electronic and magnetic response to laser irradiation is obtained from sums and
differences of the SHG intensity for opposite magnetization directions. The
classical M(T)-curve can be reproduced for delay times larger than the electron
thermalization time of about 280 fs, even when electrons and lattice have not
reached thermal equilibrium. Further we show that the transient magnetization
reaches its minimum approx. 50 fs before electron thermalization is completed.Comment: 8 pages, 5 figures, revte
Numerical Renormalization Group for Impurity Quantum Phase Transitions: Structure of Critical Fixed Points
The numerical renormalization group method is used to investigate zero
temperature phase transitions in quantum impurity systems, in particular in the
particle-hole symmetric soft-gap Anderson model. The model displays two stable
phases whose fixed points can be built up of non-interacting single-particle
states. In contrast, the quantum phase transitions turn out to be described by
interacting fixed points, and their excitations cannot be described in terms of
free particles. We show that the structure of the many-body spectrum of these
critical fixed points can be understood using renormalized perturbation theory
close to certain values of the bath exponents which play the role of critical
dimensions. Contact is made with perturbative renormalization group
calculations for the soft-gap Anderson and Kondo models. A complete description
of the quantum critical many-particle spectra is achieved using suitable
marginal operators; technically this can be understood as epsilon-expansion for
full many-body spectra.Comment: 14 pages, 12 figure
Three-dimensional shear in granular flow
The evolution of granular shear flow is investigated as a function of height
in a split-bottom Couette cell. Using particle tracking, magnetic-resonance
imaging, and large-scale simulations we find a transition in the nature of the
shear as a characteristic height is exceeded. Below there is a
central stationary core; above we observe the onset of additional axial
shear associated with torsional failure. Radial and axial shear profiles are
qualitatively different: the radial extent is wide and increases with height
while the axial width remains narrow and fixed.Comment: 4 pages, 5 figure
The Nature of Transition Circumstellar Disks II. Southern Molecular Clouds
Transition disk objects are pre-main-sequence stars with little or no near-IR
excess and significant far-IR excess, implying inner opacity holes in their
disks. Here we present a multifrequency study of transition disk candidates
located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius.
Complementing the information provided by Spitzer with adaptive optics (AO)
imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy
(Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and
accretion rate for each object in our sample in order to identify the mechanism
potentially responsible for its inner hole. We find that our transition disks
show a rich diversity in their spectral energy distribution morphology, have
disk masses ranging from lsim1 to 10 M JUP, and accretion rates ranging from
lsim10-11 to 10-7.7 M \odot yr-1. Of the 17 bona fide transition disks in our
sample, three, nine, three, and two objects are consistent with giant planet
formation, grain growth, photoevaporation, and debris disks, respectively. Two
disks could be circumbinary, which offers tidal truncation as an alternative
origin of the inner hole. We find the same heterogeneity of the transition disk
population in Lupus III, IV, and Corona Australis as in our previous analysis
of transition disks in Ophiuchus while all transition disk candidates selected
in Lupus V, VI turned out to be contaminating background asymptotic giant
branch stars. All transition disks classified as photoevaporating disks have
small disk masses, which indicates that photoevaporation must be less efficient
than predicted by most recent models. The three systems that are excellent
candidates for harboring giant planets potentially represent invaluable
laboratories to study planet formation with the Atacama Large
Millimeter/Submillimeter Array.Comment: 62 pages, 13 figure
- …
