96 research outputs found
Mechanical Properties of Dual-Cured Resin Luting Agents for Ceramic Restoration
Purpose: The aim of the present study was to evaluate the mechanical properties including surface hardness, flexural strength, and flexural modulus of two dual-cured resin luting agents (New Resin Cement [NRC] and Variolink II [VLII]) irradiated through four different thickness of leucite ceramics (0, 1, 2, and 3 mm) and their shear bond strength to zirconia ceramic (Cercon) using each ceramic primer. Materials and Methods: Knoop hardness was measured on a thin layer of resin luting agent on the ceramic surface. Three-point bending tests were performed after 24 h storage at 37°C. Two different-shaped zirconia ceramic specimens with or without sandblasting with alumina were treated with each primer. The specimens were then cemented together with each resin luting agent. Half of the specimens were stored in water at 37°C for 24 h and the other half were thermocycled 5,000 times. Results: VLII revealed statistically higher Knoop hardness and flexural modulus than NRC for each thickness of ceramic. No significant differences in flexural strength were observed between VLII and NRC for each ceramic spacer. Reduction of the mechanical properties with increase of ceramic thickness varied for each property. However, these properties were similar between the two materials. Blasting with alumina was significantly effective for increasing shear bond strength of both resin luting agents before and after thermal cycling. The use of New Ceramic Primer showed the highest shear bond strength and maintained bond durability after 5,000 thermocycles. Conclusion: Mechanical properties of NRC dual-cured resin luting agent appear adequate for ceramic restorations.This is an electronic version of an Article published in Journal of Prosthodontics 16(5): 370-376, 2007
Deposition of SiOx thin films on Y-TZP by reactive magnetron sputtering: influence of plasma parameters on the adhesion properties between Y-TZP and resin cement for application in dental prosthesis
Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis
OBJECTIVE: This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. MATERIAL AND METHODS: Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20): Gc, no treatment (control); Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s). Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC) (TC). The specimens were submitted to the shear bond strength (SBS) test using a universal testing machine (1 mm/min). Failure mode was assessed using optical and scanning electron microscopy (SEM), together with the surface roughness (Ra) of the resin cement in the bracket using interference microscopy (IM). 2-way ANOVA and the Tukey test were used to compare the data (p>0.05). RESULTS: The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0), but thermocycling did not (p=0.6974). Considering the SBS results (MPa), Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9) and Gt-TC showed the lowest (8.45±6.7). For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157) but the surface treatments did not (p=0.458). For the thermocycled and non-thermocycled groups, Ra (µm) was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. CONCLUSION: Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy
Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching
OBJECTIVE: The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. MATERIAL AND METHODS: Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8): C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. RESULTS: One-way ANOVA test showed no significant difference between treatments (p=0.3197) and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. CONCLUSIONS: Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed
Effect of conventional and experimental gingival retraction solutions on the tensile strength and inhibition of polymerization of four types of impression materials
Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets
OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group): (1) sandblasting (control); (2) tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles) between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05). Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa) than the sandblasting group (2.4±0.8 MPa, P<0.001). No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa) and the sandblasted brackets (13.6±3.9 MPa). Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets
Improving adhesion between luting cement and zirconia-based ceramic with an alternative surface treatment
This study evaluated the influence of an alternative surface treatment on the microshear bond strength (μsbs) of zirconia-based ceramic. Thirty-five zirconia disks were assigned to five groups according to the following treatments: Control (CO), glass and silane were not applied to the zirconia surface; G1, air blasted with 100μm glass beads + glaze + silane; G2, a gel containing 15% (by weight) glass beads applied to the ceramic surface + glaze + silane; G3, a gel containing 25% (by weight) glass beads applied to the ceramic surface + glaze + silane; and G4, a gel containing 50% (by weight) glass beads applied to the ceramic surface + glaze + silane. The specimens were built up using RelyX ARC®, according to the manufacturer’s recommendations, and inserted in an elastomeric mold with an inner diameter of 0.8 mm. The μsbs test was performed using a testing machine at a crosshead speed of 0.5 mm/min. ANOVA and Tukey’s test (p < 0.05) were applied to the bond strength values (in MPa). CO (15.6 ± 4.1) showed the lowest μsbs value. There were no statistical differences between the G1 (24.9 ± 7.4), G2 (24.9 ± 2.3), G3 (35.0 ± 10.3) and G4 (35.3 ± 6.0) experimental groups. Those groups submitted to surface treatments with higher concentrations of glass showed a lower frequency of adhesive failures. In conclusion, the glass application improved the interaction between the ceramic and the luting cement
Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems
- …
