298 research outputs found

    Evolution of Robustness to Noise and Mutation in Gene Expression Dynamics

    Get PDF
    Phenotype of biological systems needs to be robust against mutation in order to sustain themselves between generations. On the other hand, phenotype of an individual also needs to be robust against fluctuations of both internal and external origins that are encountered during growth and development. Is there a relationship between these two types of robustness, one during a single generation and the other during evolution? Could stochasticity in gene expression have any relevance to the evolution of these robustness? Robustness can be defined by the sharpness of the distribution of phenotype; the variance of phenotype distribution due to genetic variation gives a measure of `genetic robustness' while that of isogenic individuals gives a measure of `developmental robustness'. Through simulations of a simple stochastic gene expression network that undergoes mutation and selection, we show that in order for the network to acquire both types of robustness, the phenotypic variance induced by mutations must be smaller than that observed in an isogenic population. As the latter originates from noise in gene expression, this signifies that the genetic robustness evolves only when the noise strength in gene expression is larger than some threshold. In such a case, the two variances decrease throughout the evolutionary time course, indicating increase in robustness. The results reveal how noise that cells encounter during growth and development shapes networks' robustness to stochasticity in gene expression, which in turn shapes networks' robustness to mutation. The condition for evolution of robustness as well as relationship between genetic and developmental robustness is derived through the variance of phenotypic fluctuations, which are measurable experimentally.Comment: 25 page

    “It’s hard to tell”. The challenges of scoring patients on standardised outcome measures by multidisciplinary teams: a case study of Neurorehabilitation

    Get PDF
    Background Interest is increasing in the application of standardised outcome measures in clinical practice. Measures designed for use in research may not be sufficiently precise to be used in monitoring individual patients. However, little is known about how clinicians and in particular, multidisciplinary teams, score patients using these measures. This paper explores the challenges faced by multidisciplinary teams in allocating scores on standardised outcome measures in clinical practice. Methods Qualitative case study of an inpatient neurorehabilitation team who routinely collected standardised outcome measures on their patients. Data were collected using non participant observation, fieldnotes and tape recordings of 16 multidisciplinary team meetings during which the measures were recited and scored. Eleven clinicians from a range of different professions were also interviewed. Data were analysed used grounded theory techniques. Results We identified a number of instances where scoring the patient was 'problematic'. In 'problematic' scoring, the scores were uncertain and subject to revision and adjustment. They sometimes required negotiation to agree on a shared understanding of concepts to be measured and the guidelines for scoring. Several factors gave rise to this problematic scoring. Team members' knowledge about patients' problems changed over time so that initial scores had to be revised or dismissed, creating an impression of deterioration when none had occurred. Patients had complex problems which could not easily be distinguished from each other and patients themselves varied in their ability to perform tasks over time and across different settings. Team members from different professions worked with patients in different ways and had different perspectives on patients' problems. This was particularly an issue in the scoring of concepts such as anxiety, depression, orientation, social integration and cognitive problems. Conclusion From a psychometric perspective these problems would raise questions about the validity, reliability and responsiveness of the scores. However, from a clinical perspective, such characteristics are an inherent part of clinical judgement and reasoning. It is important to highlight the challenges faced by multidisciplinary teams in scoring patients on standardised outcome measures but it would be unwarranted to conclude that such challenges imply that these measures should not be used in clinical practice for decision making about individual patients. However, our findings do raise some concerns about the use of such measures for performance management

    Drug Resistance in Eukaryotic Microorganisms

    Get PDF
    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers

    Effect of collaborative depression treatment on risk for diabetes: A 9-year follow-up of the IMPACT randomized controlled trial

    Get PDF
    Considerable epidemiologic evidence and plausible biobehavioral mechanisms suggest that depression is an independent risk factor for diabetes. Moreover, reducing the elevated diabetes risk of depressed individuals is imperative given that both conditions are leading causes of death and disability. However, because no prior study has examined clinical diabetes outcomes among depressed patients at risk for diabetes, the question of whether depression treatment prevents or delays diabetes onset remains unanswered. Accordingly, we examined the effect of a 12-month collaborative care program for late-life depression on 9-year diabetes incidence among depressed, older adults initially free of diabetes. Participants were 119 primary care patients [M (SD) age: 67.2 (6.9) years, 41% African American] with a depressive disorder but without diabetes enrolled at the Indiana sites of the Improving Mood-Promoting Access to Collaborative Treatment (IMPACT) trial. Incident diabetes cases were defined as diabetes diagnoses, positive laboratory values, or diabetes medication prescription, and were identified using electronic medical record and Medicare/Medicaid data. Surprisingly, the rate of incident diabetes in the collaborative care group was 37% (22/59) versus 28% (17/60) in the usual care group. Even though the collaborative care group exhibited greater reductions in depressive symptom severity (p = .024), unadjusted (HR = 1.29, 95% CI: 0.69-2.43, p = .428) and adjusted (HR = 1.18, 95% CI: 0.61-2.29, p = .616) Cox proportional hazards models indicated that the risk of incident diabetes did not differ between the treatment groups. Our novel preliminary findings raise the possibility that depression treatment alone may be insufficient to reduce the excess diabetes risk of depressed, older adults

    Diversity, structure and sources of bacterial communities in earthworm cocoons.

    Get PDF
    Animals start interactions with the bacteria that will constitute their microbiomes at embryonic stage. After mating, earthworms produce cocoons externally which will be colonized with bacteria from their parents and the environment. Due to the key role bacterial symbionts play on earthworm fitness, it is important to study bacterial colonization during cocoon formation. Here we describe the cocoon microbiome of the earthworms Eisenia andrei and E. fetida, which included 275 and 176 bacterial species, respectively. They were dominated by three vertically-transmitted symbionts, Microbacteriaceae, Verminephrobacter and Ca. Nephrothrix, which accounted for 88% and 66% of the sequences respectively. Verminephrobacter and Ca. Nephrothrix showed a high rate of sequence variation, suggesting that they could be biparentally acquired during mating. The other bacterial species inhabiting the cocoons came from the bedding, where they accounted for a small fraction of the diversity (27% and 7% of bacterial species for E. andrei and E. fetida bedding). Hence, earthworm cocoon microbiome includes a large fraction of the vertically-transmitted symbionts and a minor fraction, but more diverse, horizontally and non-randomly acquired from the environment. These data suggest that horizontally-transmitted bacteria to cocoons may play an important role in the adaptation of earthworms to new environments or diets

    A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureus Enterotoxin B

    Get PDF
    The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APTSEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide

    The challenges of transferring chronic illness patients to adult care: reflections from pediatric and adult rheumatology at a US academic center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the transfer of care process from pediatric to adult rheumatology for patients with chronic rheumatic disease. The purpose of this study is to examine changes in disease status, treatment and health care utilization among adolescents transferring to adult care at the University of California San Francisco (UCSF).</p> <p>Methods</p> <p>We identified 31 eligible subjects who transferred from pediatric to adult rheumatology care at UCSF between 1995–2005. Subject demographics, disease characteristics, disease activity and health care utilization were compared between the year prior to and the year following transfer of care.</p> <p>Results</p> <p>The mean age at the last pediatric rheumatology visit was 19.5 years (17.4–22.0). Subject diagnoses included systemic lupus erythematosus (52%), mixed connective tissue disease (16%), juvenile idiopathic arthritis (16%), antiphospholipid antibody syndrome (13%) and vasculitis (3%). Nearly 30% of subjects were hospitalized for disease treatment or management of flares in the year prior to transfer, and 58% had active disease at the time of transfer. In the post-transfer period, almost 30% of subjects had an increase in disease activity. One patient died in the post-transfer period. The median transfer time between the last pediatric and first adult rheumatology visit was 7.1 months (range 0.7–33.6 months). Missed appointments were common in the both the pre and post transfer period.</p> <p>Conclusion</p> <p>A significant percentage of patients who transfer from pediatric to adult rheumatology care at our center are likely to have active disease at the time of transfer, and disease flares are common during the transfer period. These findings highlight the importance of a seamless transfer of care between rheumatology providers.</p

    Three-Dimensional Imaging of Drosophila melanogaster

    Get PDF
    The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D

    Cdk1 Targets Srs2 to Complete Synthesis-Dependent Strand Annealing and to Promote Recombinational Repair

    Get PDF
    Cdk1 kinase phosphorylates budding yeast Srs2, a member of UvrD protein family, displays both DNA translocation and DNA unwinding activities in vitro. Srs2 prevents homologous recombination by dismantling Rad51 filaments and is also required for double-strand break (DSB) repair. Here we examine the biological significance of Cdk1-dependent phosphorylation of Srs2, using mutants that constitutively express the phosphorylated or unphosphorylated protein isoforms. We found that Cdk1 targets Srs2 to repair DSB and, in particular, to complete synthesis-dependent strand annealing, likely controlling the disassembly of a D-loop intermediate. Cdk1-dependent phosphorylation controls turnover of Srs2 at the invading strand; and, in absence of this modification, the turnover of Rad51 is not affected. Further analysis of the recombination phenotypes of the srs2 phospho-mutants showed that Srs2 phosphorylation is not required for the removal of toxic Rad51 nucleofilaments, although it is essential for cell survival, when DNA breaks are channeled into homologous recombinational repair. Cdk1-targeted Srs2 displays a PCNA–independent role and appears to have an attenuated ability to inhibit recombination. Finally, the recombination defects of unphosphorylatable Srs2 are primarily due to unscheduled accumulation of the Srs2 protein in a sumoylated form. Thus, the Srs2 anti-recombination function in removing toxic Rad51 filaments is genetically separable from its role in promoting recombinational repair, which depends exclusively on Cdk1-dependent phosphorylation. We suggest that Cdk1 kinase counteracts unscheduled sumoylation of Srs2 and targets Srs2 to dismantle specific DNA structures, such as the D-loops, in a helicase-dependent manner during homologous recombinational repair
    corecore