565 research outputs found

    The Intensive Diet and Exercise for Arthritis (IDEA) trial: design and rationale

    Get PDF
    Background: Obesity is the most modifiable risk factor, and dietary induced weight loss potentially the best nonpharmacologic intervention to prevent or to slow osteoarthritis (OA) disease progression. We are currently conducting a study to test the hypothesis that intensive weight loss will reduce inflammation and joint loads sufficiently to alter disease progression, either with or without exercise. This article describes the intervention, the empirical evidence to support it, and test-retest reliability data. Methods/Design: This is a prospective, single-blind, randomized controlled trial. The study population consists of 450 overweight and obese (BMI = 27-40.5 kg/m2) older (age greater than or equal to 55 yrs) adults with tibiofemoral osteoarthritis. Participants are randomized to one of three 18-month interventions: intensive dietary restriction-plus-exercise; exercise-only; or intensive dietary restriction-only. The primary aims are to compare the effects of these interventions on inflammatory biomarkers and knee joint loads. Secondary aims will examine the effects of these interventions on function, pain, and mobility; the dose response to weight loss on disease progression; if inflammatory biomarkers and knee joint loads are mediators of the interventions; and the association between quadriceps strength and disease progression. Results: Test-retest reliability results indicated that the ICCs for knee joint load variables were excellent, ranging from 0.86 - 0.98. Knee flexion/extension moments were most affected by BMI, with lower reliability with the highest tertile of BMI. The reliability of the semi-quantitative scoring of the knee joint using MRI exceeded previously reported results, ranging from a low of 0.66 for synovitis to a high of 0.99 for bone marrow lesion size. Discussion: The IDEA trial has the potential to enhance our understanding of the OA disease process, refine weight loss and exercise recommendations in this prevalent disease, and reduce the burden of disability. Originally published BMC Musculoskeletal Disorders, Vol. 10, No. 93, July 200

    A Database of Wing Diversity in the Hawaiian Drosophila

    Get PDF
    Background. Within genus Drosophila, the endemic Hawaiian species offer some of the most dramatic examples of morphological and behavioral evolution. The advent of the Drosophila grimshawi genome sequence permits genes of interest to be readily cloned from any of the hundreds of species of Hawaiian Drosophila, offering a powerful comparative approach to defining molecular mechanisms of species evolution. A key step in this process is to survey the Hawaiian flies for characters whose variation can be associated with specific candidate genes. The wings provide an attractive target for such studies: Wings are essentially two dimensional, and genes controlling wing shape, vein specification, pigment production, and pigment pattern evolution have all been identified in Drosophila. Methodology/Principal Findings. We present a photographic database of over 180 mounted, adult wings from 73 species of Hawaiian Drosophila. The image collection, available at FlyBase.org, includes 53 of the 112 known species of picture wing\u27\u27 Drosophila, and several species from each of the other major Hawaiian groups, including the modified mouthparts, modified tarsus, antopocerus, and haleakalae (fungus feeder) groups. Direct image comparisons show that major wing shape changes can occur even between closely related species, and that pigment pattern elements can vary independently of each other. Among the 30 species closest to grimshawi, diverse visual effects are achieved by altering a basic pattern of seven wing spots. Finally, we document major pattern variations within species, which appear to result from reduced diffusion of pigment precursors through the wing blade. Conclusions/Significance. The database highlights the striking variation in size, shape, venation, and pigmentation in Hawaiian Drosophila, despite their generally low levels of DNA sequence divergence. In several independent lineages, highly complex patterns are derived from simple ones. These lineages offer a promising model system to study the evolution of complexity

    Scalable In Situ Hybridization on Tissue Arrays for Validation of Novel Cancer and Tissue-Specific Biomarkers

    Get PDF
    Tissue localization of gene expression is increasingly important for accurate interpretation of large scale datasets from expression and mutational analyses. To this end, we have (1) developed a robust and scalable procedure for generation of mRNA hybridization probes, providing >95% first-pass success rate in probe generation to any human target gene and (2) adopted an automated staining procedure for analyses of formalin-fixed paraffin-embedded tissues and tissue microarrays. The in situ mRNA and protein expression patterns for genes with known as well as unknown tissue expression patterns were analyzed in normal and malignant tissues to assess procedure specificity and whether in situ hybridization can be used for validating novel antibodies. We demonstrate concordance between in situ transcript and protein expression patterns of the well-known pathology biomarkers KRT17, CHGA, MKI67, PECAM1 and VIL1, and provide independent validation for novel antibodies to the biomarkers BRD1, EZH2, JUP and SATB2. The present study provides a foundation for comprehensive in situ gene set or transcriptome analyses of human normal and tumor tissues

    Assessing prediction of diabetes in older adults using different adiposity measures: a 7 year prospective study in 6,923 older men and women

    Get PDF
    The aim of this study was to examine whether waist circumference (WC) or WHR improve diabetes prediction beyond body mass index in older men and women, and to define optimal cut-off points. In this prospective study, non-diabetic men (n = 3,519) and women (n = 3,404) aged 60-79 years were followed up for 7 years. There were 169 and 128 incident cases of type 2 diabetes in men and women, respectively. BMI, WC and WHR all showed strong associations with incident type 2 diabetes independent of potential confounders. In men, the adjusted relative risks (top vs lowest quartile) were 4.71 (95% CI 2.45-9.03) for BMI, 3.53 (95% CI 1.92-6.48) for WC and 2.76 (95% CI 1.58-4.82) for WHR. For women, the corresponding relative risks were 4.10 (95% CI 2.16-7.79), 12.18 (95% CI 4.83-30.74) and 5.61 (95% CI 2.84-11.09) for BMI, WC and WHR, respectively. Receiver-operating characteristic curve analysis revealed similar associations for BMI and WC in predicting diabetes in men (AUC = 0.726 and 0.713, respectively); WHR was the weakest predictor (AUC = 0.656). In women, WC was a significantly stronger predictor (AUC = 0.780) than either BMI (AUC = 0.733) or WHR (AUC = 0.728; p < 0.01 for both). Inclusion of both WC and BMI did not improve prediction beyond BMI alone in men or WC alone in women. Optimal sensitivity and specificity for the prediction of type 2 diabetes was observed at a WC of 100 cm in men and 92 cm in women. In older men, BMI and WC yielded similar prediction of risk of type 2 diabetes, whereas WC was clearly a superior predictor in older wome

    An intergenerational study of perceptions of changes in active free play among families from rural areas of Western Canada

    Get PDF
    Background: Children's engagement in active free play has declined across recent generations. Therefore, the purpose of this study was to examine perceptions of intergenerational changes in active free play among families from rural areas. We addressed two research questions: (1) How has active free play changed across three generations? (2) What suggestions do participants have for reviving active free play? Methods: Data were collected via 49 individual interviews with members of 16 families (15 grandparents, 16 parents, and 18 children) residing in rural areas/small towns in the Province of Alberta (Canada). Interview recordings were transcribed verbatim and subjected to thematic analysis guided by an ecological framework of active free play. Results: Factors that depicted the changing nature of active free play were coded in the themes of less imagination/more technology, safety concerns, surveillance, other children to play with, purposeful physical activity, play spaces/organized activities, and the good parenting ideal. Suggestions for reviving active free play were coded in the themes of enhance facilities to keep kids entertained, provide more opportunities for supervised play, create more community events, and decrease use of technology. Conclusions: These results reinforce the need to consider multiple levels of social ecology in the study of active free play, and highlight the importance of community-based initiatives to revive active free play in ways that are consistent with contemporary notions of good parentin

    The Importance of Creative Practices in Designing More-Than-Human Cities

    Get PDF
    Anthropocentric city design practices can lead to the creation of urban environments that serve human needs over the needs of non-human species and the natural environment. This chapter explores the different ways in which cities are creative and more importantly how creative processes, in the form of arts-based methods, may support the design of more-than-human cities, ones in which a diversity of species are able to co-exist with humans. Arts-based methods support different ways of imagining non-human concerns, bringing varied viewpoints to the fore and revealing tensions. Arts-based methods can also be used to lower barriers for participation, providing engaging and creative ways to interpret data and information that provides evidence from beyond the lived experiences of those involved in city design. Such approaches are also useful for bringing other marginalized voices to design, such as those of children. Two case studies are described that showcase the use of arts-based method for different aspects of urban design.Post-print / Final draf

    The Critical Role of Notch Ligand Delta-like 1 in the Pathogenesis of Influenza A Virus (H1N1) Infection

    Get PDF
    Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection

    Expression patterns of the aquaporin gene family during renal development: influence of genetic variability

    Get PDF
    High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney
    corecore