72 research outputs found

    A platform for efficient, thiol-stable conjugation to albumin's native single accessible cysteine

    Get PDF
    Herein we report the use of bromomaleimides for the construction of stable albumin conjugates via conjugation to its native, single accessible, cysteine followed by hydrolysis. Advantages over the classical maleimide approach are highlighted in terms of quantitative hydrolysis and absence of undesirable retro-Michael deconjugation

    Optimised approach to albumin-drug conjugates using monobromomaleimide-C-2 linkers

    Get PDF
    Conjugation of therapeutics to human serum albumin (HSA) using bromomaleimides represents a promising platform for half-life extension. We show here that the Cys-34 crevice substantially reduces the rate of serum stabilising maleimide hydrolysis in these conjugates, necessitating reagent optimisation. This improved reagent design is applied to the construction of an HSA-paclitaxel conjugate, preventing drug loss during maleimide hydrolysis

    Comparing the old and new generation SELDI-TOF MS: implications for serum protein profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the PBS-IIc SELDI-TOF MS apparatus has been extensively used in the search for better biomarkers, issues have been raised concerning the semi-quantitative nature of the technique and its reproducibility. To overcome these limitations, a new SELDI-TOF MS instrument has been introduced: the PCS 4000 series. Changes in this apparatus compared to the older one are a.o. an increased dynamic range of the detector, an adjusted configuration of the detector sensitivity, a raster scan that ensures more complete desorption coverage and an improved detector attenuation mechanism. In the current study, we evaluated the performance of the old PBS-IIc and new PCS 4000 series generation SELDI-TOF MS apparatus.</p> <p>Methods</p> <p>To this end, two different sample sets were profiled after which the same ProteinChip arrays were analysed successively by both instruments. Generated spectra were analysed by the associated software packages. The performance of both instruments was evaluated by assessment of the number of peaks detected in the two sample sets, the biomarker potential and reproducibility of generated peak clusters, and the number of peaks detected following serum fractionation.</p> <p>Results</p> <p>We could not confirm the claimed improved performance of the new PCS 4000 instrument, as assessed by the number of peaks detected, the biomarker potential and the reproducibility. However, the PCS 4000 instrument did prove to be of superior performance in peak detection following profiling of serum fractions.</p> <p>Conclusion</p> <p>As serum fractionation facilitates detection of low abundant proteins through reduction of the dynamic range of serum proteins, it is now increasingly applied in the search for new potential biomarkers. Hence, although the new PCS 4000 instrument did not differ from the old PBS-IIc apparatus in the analysis of crude serum, its superior performance after serum fractionation does hold promise for improved biomarker detection and identification.</p

    Arabidopsis MKS1 Is Involved in Basal Immunity and Requires an Intact N-terminal Domain for Proper Function

    Get PDF
    Innate immune signaling pathways in animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. MAP kinase 4 (MPK4) functions downstream of innate immune receptors via a nuclear substrate MKS1 to regulate the activity of the WRKY33 transcription factor, which in turn controls the production of anti-microbial phytoalexins.We investigate the role of MKS1 in basal resistance and the importance of its N- and C-terminal domains for MKS1 function. We used the information that mks1 loss-of-function partially suppresses the mpk4 loss-of-function phenotype, and that transgenic expression of functional MKS1 in mpk4/mks1 double mutants reverted the mpk4 dwarf phenotype. Transformation of mks1/mpk4 with mutant versions of MKS1 constructs showed that a single amino acid substitution in a putative MAP kinase docking domain, MKS1-L32A, or a truncated MKS1 version unable to interact with WRKY33, were deficient in reverting the double mutant to the mpk4 phenotype. These results demonstrate functional requirement in MKS1 for the interaction with MPK4 and WRKY33. In addition, nuclear localization of MKS1 was shown to depend on an intact N-terminal domain. Furthermore, loss-of-function mks1 mutants exhibited increased susceptibility to strains of Pseudomonas syringae and Hyaloperonospora arabidopsidis, indicating that MKS1 plays a role in basal defense responses.Taken together, our results indicate that MKS1 function and subcellular location requires an intact N-terminus important for both MPK4 and WRKY33 interactions

    Heavy episodic drinking and soccer practice among high school students in Brazil: the contextual aspects of this relationship

    Get PDF
    BACKGROUND: Heavy episodic drinking (HED) (consumption of five or more drinks on the same occasion) among adolescents is related to several problems and partaking in sport or physical activities has been suggested as an option to prevent or reduce alcohol consumption among this population. The aim of this study was to investigate the relationship between soccer practice and heavy episodic drinking among high school students from Brazil. METHODS: Data were obtained from a cross-sectional study among a representative sample of public and private high school students from all Brazilian state capitals (N=19,132). Only students aged from 14 to 18 who reported having taken part in soccer practice, other team sports or non-practicing sports in the last month were included. Characteristics of sport practice (frequency and motivation) and HED in the last month (type of drink; where and with whom they drank; frequency of HED) were also considered. Regression models were controlled for sociodemographic variables. RESULTS: For all groups studied most of the students reported drinking beer, with friends and at nightclubs or bars. Soccer practice was associated to HED when compared to non-practicing sports and to other team sports. Compared to other team sports, playing soccer for pleasure or profession, but not for keep fit or health reasons, were more associated to HED. Frequency of soccer practice from 1 to 5 days per month and 20 or more days per month, but not from 6 to 19 days per month, were also more associated to HED. CONCLUSIONS: The relationship between soccer and HED appears to be particularly stronger than in other team sports among adolescents in Brazil. Induced sociability of team sports practice cannot be assumed as the main reason for HED among soccer players. Possibly these results reflect the importance of a strong cultural association between soccer and beer in Brazil and these findings should be integrated to future prevention or intervention programs

    Complete Genome Sequence of Mycoplasma suis and Insights into Its Biology and Adaption to an Erythrocyte Niche

    Get PDF
    Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD+ kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host' nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems

    Modes of Aβ toxicity in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide
    corecore