313 research outputs found

    Extrusion-aided Faba bean protein fractionation

    Get PDF
    Sustaining the availability of plant-based protein alternatives to meet the growing demand is crucial. Texturized vegetable protein (TVP) is one of the plant-based alternatives available; however, the production of TVP involves energy and water-intensive processes for protein enrichment of the raw material. The state-of-the-art dry-extrusion-aided plant protein fractionation process, recently patented by VTT, presents a promising alternative for the existing protein-enrichment methods. However, despite of its potential, there is limited knowledge regarding the impact of extrusion conditions on the properties of the produced fractions. Thus, this thesis aims at identifying extrusion conditions favouring starch-protein separation, focusing on the utilization of the untapped potential of Faba bean (Vicia faba), a locally cultivated legume known for its high protein content. Through process optimization, different conditions favouring high protein content and high protein yields in the protein-rich fraction were identified. The optimized conditions for protein content yielded a protein content of 76.78% with a protein yield of 59.84%. Additionally, when the focus shifted towards maximizing protein yield, a protein yield of 84.85% with a corresponding protein content of 71.02% was obtained. Notably, these results were relatively higher than protein concentrate and TVP available in the market. Moreover, the optimized conditions not only resulted in high protein content and yield of protein-rich extrudates, but also demonstrated comparable techno-functional properties to commercial TVP. Additionally, the extent of protein texturization during the extrusion process determined the techno-functional attributes of the protein-rich fraction. The dry extrusion-aided fractionation process is expected to be a more sustainable approach compared to conventional TVP production by bypassing resource-intensive flour fractionation. This research contributes valuable insights into facilitating the development of innovative and more sustainable plant-based protein alternatives

    A cotton miRNA is involved in regulation of plant response to salt stress

    Get PDF
    The present study functionally identified a new microRNA (microRNA ovual line 5, miRNVL5) with its target gene GhCHR from cotton (Gossypium hirsutum). The sequence of miRNVL5 precursor is 104 nt long, with a well developed secondary structure. GhCHR contains two DC1 and three PHD Cys/His-rich domains, suggesting that GhCHR encodes a zinc-finger domain-containing transcription factor. miRNVL5 and GhCHR express at various developmental stages of cotton. Under salt stress (50–400 mM NaCl), miRNVL5 expression was repressed, with concomitant high expression of GhCHR in cotton seedlings. Ectopic expression of GhCHR in Arabidopsis conferred salt stress tolerance by reducing Na+ accumulation in plants and improving primary root growth and biomass. Interestingly, Arabidopsis constitutively expressing miRNVL5 showed hypersensitivity to salt stress. A GhCHR orthorlous gene At2g44380 from Arabidopsis that can be cleaved by miRNVL5 was identified by degradome sequencing, but no confidential miRNVL5 homologs in Arabidopsis have been identified. Microarray analysis of miRNVL5 transgenic Arabidopsis showed six downstream genes (CBF1, CBF2, CBF3, ERF4, AT3G22920, and AT3G49200), which were induced by salt stress in wild-type but repressed in miRNVL5-expressing Arabidopsis. These results indicate that miRNVL5 is involved in regulation of plant response to salt stress

    Aggregated a-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons

    Get PDF
    α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson’s disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced

    Selected hematologic and biochemical measurements in African HIV-infected and uninfected pregnant women and their infants: the HIV Prevention Trials Network 024 protocol

    Get PDF
    Reference values for hematological and biochemical assays in pregnant women and in newborn infants are based primarily on Caucasian populations. Normative data are limited for populations in sub-Saharan Africa, especially comparing women with and without HIV infection, and comparing infants with and without HIV infection or HIV exposure. We determined HIV status and selected hematological and biochemical measurements in women at 20-24 weeks and at 36 weeks gestation, and in infants at birth and 4-6 weeks of age. All were recruited within a randomized clinical trial of antibiotics to prevent chorioamnionitis-associated mother-to-child transmission of HIV (HPTN024). We report nearly complete laboratory data on 2,292 HIV-infected and 367 HIV-uninfected pregnant African women who were representative of the public clinics from which the women were recruited. Nearly all the HIV-infected mothers received nevirapine prophylaxis at the time of labor, as did their infants after birth (always within 72 hours of birth, but typically within just a few hours at the four study sites in Malawi (2 sites), Tanzania, and Zambia. HIV-infected pregnant women had lower red blood cell counts, hemoglobin, hematocrit, and white blood cell counts than HIV-uninfected women. Platelet and monocyte counts were higher among HIV-infected women at both time points. At the 4-6-week visit, HIV-infected infants had lower hemoglobin, hematocrit and white blood cell counts than uninfected infants. Platelet counts were lower in HIV-infected infants than HIV-uninfected infants, both at birth and at 4-6 weeks of age. At 4-6 weeks, HIV-infected infants had higher alanine aminotransferase measures than uninfected infants. Normative data in pregnant African women and their newborn infants are needed to guide the large-scale HIV care and treatment programs being scaled up throughout the continent. These laboratory measures will help interpret clinical data and assist in patient monitoring in a sub-Saharan Africa context

    Arm-specific dynamics of chromosome evolution in malaria mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The malaria mosquito species of subgenus <it>Cellia </it>have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in <it>Anopheles gambiae </it>and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus <it>Cellia </it>nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints.</p> <p>Results</p> <p>To gain a better understanding of the arm-specific differences in the rates of genome rearrangements, we compared gene orders and established syntenic relationships among <it>Anopheles gambiae, Anopheles funestus</it>, and <it>Anopheles stephensi</it>. We provided evidence that polymorphic inversions on the 2R arms in these three species nonrandomly captured similar sets of genes. This nonrandom distribution of genes was not only a result of preservation of ancestral gene order but also an outcome of extensive reshuffling of gene orders that created new combinations of homologous genes within independently originated polymorphic inversions. The statistical analysis of distribution of conserved gene orders demonstrated that the autosomal arms differ in their tolerance to generating evolutionary breakpoints. The fastest evolving 2R autosomal arm was enriched with gene blocks conserved between only a pair of species. In contrast, all identified syntenic blocks were preserved on the slowly evolving 3R arm of <it>An. gambiae </it>and on the homologous arms of <it>An. funestus </it>and <it>An. stephensi</it>.</p> <p>Conclusions</p> <p>Our results suggest that natural selection favors specific gene combinations within polymorphic inversions when distant species are exposed to similar environmental pressures. This knowledge could be useful for the discovery of genes responsible for an association of inversion polymorphisms with phenotypic variations in multiple species. Our data support the chromosomal arm specificity in rates of gene order disruption during mosquito evolution. We conclude that the distribution of breakpoint regions is evolutionary conserved on slowly evolving arms and tends to be lineage-specific on rapidly evolving arms.</p

    Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-restorative activity in TNBS-induced Inflammatory Bowel Disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory Bowel Disease (IBD) is marked with chronic inflammation of intestinal epithelium driven by oxidative stress. Traditional treatments with plant extracts gained renewed interest due to their ability to ameliorate the multi factorial conditions like inflammation. We investigated the beneficial effects of <it>Withania somnifera </it>in Trinitro Benzyl Sulfonic Acid (TNBS) induced experimental IBD through a rectally applicable formulation.</p> <p>Methods</p> <p>The study included (i) preparation of gel formulation from aqueous <it>Withania somnifera </it>root extract (WSRE), (ii) biochemical assays to determine its performance potential, (iii) testing of formulation efficacy in TNBS-induced IBD rat model, and (iv) histo-patholgical studies to assess its healing and muco-regenerative effect in IBD-induced rats. For this purpose, concentration dependant antioxidant activity of the extracts were evaluated using biochemical assays like (a) inhibition of lipid peroxidation, (b) NO scavenging, (c) H<sub>2</sub>O<sub>2 </sub>scavenging, and (d) ferric reducing power assay.</p> <p>Results</p> <p>The extract, at 500 μg/ml, the highest concentration tested, showed 95.6% inhibition of lipid peroxidation, 14.8% NO scavenging, 81.79% H<sub>2</sub>O<sub>2 </sub>scavenging and a reducing capacity of 0.80. The results were comparable with standard antioxidants, ascorbic acid and curcumin. WSRE treatment positively scored on histopathological parameters like necrosis, edema, neutrophil infiltration. The post treatment intestinal features showed restoration at par with the healthy intestine. In view of these results, gel formulation containing an aqueous extract of <it>W. somnifera</it>, prepared for rectal application was tested for its anti-inflammatory activity in TNBS-induced rat models for IBD. Commercially available anti-inflammatory drug Mesalamine was used as the standard in this assay.</p> <p>Conclusions</p> <p>Dose of the rectal gel applied at 1000 mg of WSRE per kg rat weight showed significant muco-restorative efficacy in the IBD-induced rats, validated by histo-pathological studies.</p

    Phyllanthus spp. Induces Selective Growth Inhibition of PC-3 and MeWo Human Cancer Cells through Modulation of Cell Cycle and Induction of Apoptosis

    Get PDF
    BACKGROUND: Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC(50)) values of 150-300 µg/ml for aqueous extract and 50-150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear "ladder" fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants. CONCLUSIONS/SIGNIFICANCE: Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent
    corecore