7,970 research outputs found
Coexistence of Magnetic Order and Two-dimensional Superconductivity at LaAlO/SrTiO Interfaces
A two dimensional electronic system with novel electronic properties forms at
the interface between the insulators LaAlO and SrTiO. Samples
fabricated until now have been found to be either magnetic or superconducting,
depending on growth conditions. We combine transport measurements with
high-resolution magnetic torque magnetometry and report here evidence of
magnetic ordering of the two-dimensional electron liquid at the interface. The
magnetic ordering exists from well below the superconducting transition to up
to 200 K, and is characterized by an in-plane magnetic moment. Our results
suggest that there is either phase separation or coexistence between magnetic
and superconducting states. The coexistence scenario would point to an
unconventional superconducting phase in the ground state.Comment: 10 pages, 4 figure
Regulatory control and the costs and benefits of biochemical noise
Experiments in recent years have vividly demonstrated that gene expression
can be highly stochastic. How protein concentration fluctuations affect the
growth rate of a population of cells, is, however, a wide open question. We
present a mathematical model that makes it possible to quantify the effect of
protein concentration fluctuations on the growth rate of a population of
genetically identical cells. The model predicts that the population's growth
rate depends on how the growth rate of a single cell varies with protein
concentration, the variance of the protein concentration fluctuations, and the
correlation time of these fluctuations. The model also predicts that when the
average concentration of a protein is close to the value that maximizes the
growth rate, fluctuations in its concentration always reduce the growth rate.
However, when the average protein concentration deviates sufficiently from the
optimal level, fluctuations can enhance the growth rate of the population, even
when the growth rate of a cell depends linearly on the protein concentration.
The model also shows that the ensemble or population average of a quantity,
such as the average protein expression level or its variance, is in general not
equal to its time average as obtained from tracing a single cell and its
descendants. We apply our model to perform a cost-benefit analysis of gene
regulatory control. Our analysis predicts that the optimal expression level of
a gene regulatory protein is determined by the trade-off between the cost of
synthesizing the regulatory protein and the benefit of minimizing the
fluctuations in the expression of its target gene. We discuss possible
experiments that could test our predictions.Comment: Revised manuscript;35 pages, 4 figures, REVTeX4; to appear in PLoS
Computational Biolog
Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters
Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed
Properties of Soils and Plants Uptake within the Vicinity of Selected Automobile Workshops in Ile-Ife Southwestern, Nigeria
Backyard farming is becoming popular among the auto mechanics near their workshops where spent engine oil and carcass of vehicles are continuously dumped in Nigeria. The properties of soil and maize plants sampled from the vicinity of selected auto mechanic workshops in Ile-Ife, Nigeria were investigated. The results showed that heavy metal contents in the soils from the sampled sites were (range, mg kg-1) Fe 1238.12 to 1564.25, Zn 18.10 to 24.75, Pb 1.21 to 3.43 and Hg 0.48 to 0.74. These values were significantly (P< 0.05) higher than the control (non auto mechanic site) with Fe 37.50, Zn 0.70, Pb 0.15 and Hg 0.13 mg kg-1. Also, these soil parameters reduced in values in the sub-soil. The mean concentrations of heavy metals (Fe, Zn, Pb and Hg) in maize plants were significantly (P < 0.05) higher while N and P were significantly (P < 0.05) lower in those from the experimental sites within the vicinity of automobile workshops than in the control. Higher accumulation of these heavy metals was obtained in soil and shoots of maize from older workshops than in the younger ones. The study therefore concluded that edible crops, particularly the phytoplants should not be cultivated on polluted soils as this may pose a threat to human health, if the heavy metals enter the food chain.Keywords: Backyard farming, automobile, spent engine oil, carcass of vehicle, plant uptake, phytoplant
Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight
Indexación: Web of Science; PubMedBackground
Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages.
Results
A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles.
Conclusions
We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-
The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants.
A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants
The Galactic Center Black Hole Laboratory
The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*)
shows flare emission from the millimeter to the X-ray domain. A detailed
analysis of the infrared light curves allows us to address the accretion
phenomenon in a statistical way. The analysis shows that the near-infrared
flare amplitudes are dominated by a single state power law, with the low states
in SgrA* limited by confusion through the unresolved stellar background. There
are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO
is one of them. Its nature is unclear. It may be comparable to similar stellar
dusty sources in the region or may consist predominantly of gas and dust. In
this case a particularly enhanced accretion activity onto SgrA* may be expected
in the near future. Here the interpretation of recent data and ongoing
observations are discussed.Comment: 30 pages - 7 figures - accepted for publication by Springer's
"Fundamental Theories of Physics" series; summarizing GC contributions of 2
conferences: 'Equations of Motion in Relativistic Gravity' at the
Physikzentrum Bad Honnef, Bad Honnef, Germany, (Feb. 17-23, 2013) and the
COST MP0905 'The Galactic Center Black Hole Laboratory' Granada, Spain (Nov.
19 - 22, 2013
Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature
The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
Quantum oscillations of nitrogen atoms in uranium nitride
The vibrational excitations of crystalline solids corresponding to acoustic
or optic one phonon modes appear as sharp features in measurements such as
neutron spectroscopy. In contrast, many-phonon excitations generally produce a
complicated, weak, and featureless response. Here we present time-of-flight
neutron scattering measurements for the binary solid uranium nitride (UN),
showing well-defined, equally-spaced, high energy vibrational modes in addition
to the usual phonons. The spectrum is that of a single atom, isotropic quantum
harmonic oscillator and characterizes independent motions of light nitrogen
atoms, each found in an octahedral cage of heavy uranium atoms. This is an
unexpected and beautiful experimental realization of one of the fundamental,
exactly-solvable problems in quantum mechanics. There are also practical
implications, as the oscillator modes must be accounted for in the design of
generation IV nuclear reactors that plan to use UN as a fuel.Comment: 25 pages, 10 figures, submitted to Nature Communications,
supplementary information adde
- …
