51 research outputs found

    Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli)

    Get PDF
    Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.Peer ReviewedPostprint (published version

    The Effects of Biting and Pulling on the Forces Generated during Feeding in the Komodo Dragon (Varanus komodoensis)

    Get PDF
    In addition to biting, it has been speculated that the forces resulting from pulling on food items may also contribute to feeding success in carnivorous vertebrates. We present an in vivo analysis of both bite and pulling forces in Varanus komodoensis, the Komodo dragon, to determine how they contribute to feeding behavior. Observations of cranial modeling and behavior suggest that V. komodoensis feeds using bite force supplemented by pulling in the caudal/ventrocaudal direction. We tested these observations using force gauges/transducers to measure biting and pulling forces. Maximum bite force correlates with both body mass and total body length, likely due to increased muscle mass. Individuals showed consistent behaviors when biting, including the typical medial-caudal head rotation. Pull force correlates best with total body length, longer limbs and larger postcranial motions. None of these forces correlated well with head dimensions. When pulling, V. komodoensis use neck and limb movements that are associated with increased caudal and ventral oriented force. Measured bite force in Varanus komodoensis is similar to several previous estimations based on 3D models, but is low for its body mass relative to other vertebrates. Pull force, especially in the ventrocaudal direction, would allow individuals to hunt and deflesh with high success without the need of strong jaw adductors. In future studies, pull forces need to be considered for a complete understanding of vertebrate carnivore feeding dynamics

    Bird-Like Anatomy, Posture, and Behavior Revealed by an Early Jurassic Theropod Dinosaur Resting Trace

    Get PDF
    BACKGROUND: Fossil tracks made by non-avian theropod dinosaurs commonly reflect the habitual bipedal stance retained in living birds. Only rarely-captured behaviors, such as crouching, might create impressions made by the hands. Such tracks provide valuable information concerning the often poorly understood functional morphology of the early theropod forelimb. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a well-preserved theropod trackway in a Lower Jurassic ( approximately 198 million-year-old) lacustrine beach sandstone in the Whitmore Point Member of the Moenave Formation in southwestern Utah. The trackway consists of prints of typical morphology, intermittent tail drags and, unusually, traces made by the animal resting on the substrate in a posture very similar to modern birds. The resting trace includes symmetrical pes impressions and well-defined impressions made by both hands, the tail, and the ischial callosity. CONCLUSIONS/SIGNIFICANCE: The manus impressions corroborate that early theropods, like later birds, held their palms facing medially, in contrast to manus prints previously attributed to theropods that have forward-pointing digits. Both the symmetrical resting posture and the medially-facing palms therefore evolved by the Early Jurassic, much earlier in the theropod lineage than previously recognized, and may characterize all theropods

    3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia:Urodela)

    Get PDF
    Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and theirPeer ReviewedPostprint (published version

    Transforming musical performance: activating the audience as digital collaborators

    Get PDF
    Digital technologies have transformed the performance practice, recording and distribution technologies, economy and sonic landscape of music in a process of change that began in the early 1980s. Recent technological developments have opened up the possibility of embodied interaction between audiences and performers, reframing music performance as a collaborative improvisatory space that affords Interactive Musical Participation. The research in this practice-based thesis looks at the relationship and experience of audience members and musicians exploring Interactive Musical Participation within the wide stylistic framework of contemporary jazz. It also studies the potential for the creation of compositional, technological and performance protocols to enable successful Interactive Musical Participation. This has been achieved through a process of mapping the methodology behind the composition, technical infrastructure, performances and post-performance analysis of a series of musical artefacts. Cook (2001 and 2009) suggests that researchers in this field should “Make a piece, not an instrument or controller” and this dictum has influenced the development of the technical infrastructure for this research. Easily accessible and low-cost digital audio workstations Ableton Live (2017) and Logic Pro X (Apple, 2019) as well as the digital protocols Open Sound Control (OSC) (Opensoundcontrol.org) have been utilised to deliver the programming and networking requirements. A major innovation stemming from this project has been the development of the Deeper Love Soundpad App, a sample playback app for Apple smartphones and iPads, in collaboration with Dr. Rob Toulson. The theoretical background to this research has been informed by actornetwork theory, the sociological approach developed by Bruno Latour (2005), Michel Callon (1986) and John Law (1992). Actor-network theory (ANT) provides a framework for understanding the mechanics of power and organisation within heterogeneous non-hierarchical networks. Mapping and analysing the ANT networks and connections created by the research performances has provided valuable data in the Interactive Musical Participatio
    corecore