234 research outputs found

    Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males

    Get PDF
    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this ‘glucose memory facilitation effect’ are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual’s sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic–pituitary–adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14–17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic–pituitary–adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Translational toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans

    Get PDF
    Background We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of “granular biopersistent particles without known specific toxicity” (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK’s human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. Methods We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. Results The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Conclusion Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.International Carbon Black Associatio

    Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease

    Get PDF
    Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action. © 2010 Macmillan Publishers Limited. All rights reserved

    Interplay between n-3 and n-6 long-chain polyunsaturated fatty acids and the endocannabinoid system in brain protection and repair.

    Get PDF
    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFA) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) have shown beneficial effects on learning and memory, neuroinflammatory processes and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-archidonoylglycerol (2-AG) are the most widely studied endocannabinoids, and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair

    Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation

    Get PDF
    Cranial radiotherapy in children often leads to progressive cognitive decline. We have established a rodent model of irradiation-induced injury to the young brain. A single dose of 8 Gy was administered to the left hemisphere of postnatal day 10 (P10) mice. Harlequin (Hq) mice, carrying the hypomorphic apoptosis-inducing factor AIFHq mutation, express 60% less AIF at P10 and displayed significantly fewer dying cells in the subventricular zone (SVZ) 6 h after IR, compared with wild type (Wt) littermates. Irradiated cyclophilin A-deficient (CypA−/−) mice confirmed that CypA has an essential role in AIF-induced apoptosis after IR. Hq mice displayed no reduction in SVZ size 7 days after IR, whereas 48% of the SVZ was lost in Wt mice. The proliferation rate was lower in the SVZ of Hq mice. Cultured neural precursor cells from the SVZ of Hq mice displayed a slower proliferation rate and were more resistant to IR. IR preferentially kills proliferating cells, and the slower proliferation rate in the SVZ of Hq mice may, at least partly, explain the protective effect of the Hq mutation. Together, these results indicate that targeting AIF may provide a fruitful strategy for protection of normal brain tissue against the detrimental side effects of IR

    Patients' perspectives on high-tech home care: a qualitative inquiry into the user-friendliness of four technologies

    Get PDF
    BACKGROUND: The delivery of technology-enhanced home care is growing in most industrialized countries. The objective of our study was to document, from the patient's perspective, how the level of user-friendliness of medical technology influences its integration into the private and social lives of patients. Understanding what makes a technology user-friendly should help improve the design of home care services. METHODS: Four home care interventions that are frequently used and vary in their technical and clinical features were selected: Antibiotic intravenous therapy, parenteral nutrition, peritoneal dialysis and oxygen therapy. Our qualitative study relied on the triangulation of three sources of data: 1) interviews with patients (n = 16); 2) interviews with carers (n = 6); and 3) direct observation of nursing visits of a different set of patients (n = 16). Participants of varying socioeconomic status were recruited through primary care organizations and hospitals that deliver home care within 100 km of Montreal, the largest urban area in the province of Quebec, Canada. RESULTS: The four interventions have both a negative and positive effect on patients' lives. These technologies were rarely perceived as user-friendly, and user-acceptance was closely linked to user-competence. Compared with acute I.V. patients, who tended to be passive, chronic patients seemed keener to master technical aspects. While some of the technical and human barriers were managed well in the home setting, engaging in the social world was more problematic. Most patients found it difficult to maintain a regular job because of the high frequency of treatment, while some carers found their autonomy and social lives restricted. Patients also tended to withdraw from social activities because of social stigmatization and technical barriers. CONCLUSIONS: While technology contributes to improving the patients' health, it also imposes significant constraints on their lives. Policies aimed at developing home care must clearly integrate principles and resources supporting the appropriate use of technology. Close monitoring of patients should be part of all technology-enhanced home care programs

    Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery

    Get PDF
    Anatomical knowledge of the structures to be targeted and of the circuitry involved is crucial in stereotactic functional neurosurgery. The present study was undertaken in the context of surgical treatment of motor disorders such as essential tremor (ET) and Parkinson’s disease (PD) to precisely determine the course and three-dimensional stereotactic localisation of the cerebellothalamic and pallidothalamic tracts in the human brain. The course of the fibre tracts to the thalamus was traced in the subthalamic region using multiple staining procedures and their entrance into the thalamus determined according to our atlas of the human thalamus and basal ganglia [Morel (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa Healthcare Inc., New York]. Stereotactic three-dimensional coordinates were determined by sectioning thalamic and basal ganglia blocks parallel to stereotactic planes and, in two cases, by correlation with magnetic resonance images (MRI) from the same brains prior to sectioning. The major contributions of this study are to provide: (1) evidence that the bulks of the cerebellothalamic and pallidothalamic tracts are clearly separated up to their thalamic entrance, (2) stereotactic maps of the two tracts in the subthalamic region, (3) the possibility to discriminate between different subthalamic fibre tracts on the basis of immunohistochemical stainings, (4) correlations of histologically identified fibre tracts with high-resolution MRI, and (5) evaluation of the interindividual variability of the fibre systems in the subthalamic region. This study should provide an important basis for accurate stereotactic neurosurgical targeting of the subthalamic region in motor disorders such as PD and ET

    Immunotoxin-Mediated Tract Targeting in the Primate Brain: Selective Elimination of the Cortico-Subthalamic “Hyperdirect” Pathway

    Get PDF
    Using a neuron-specific retrograde gene-transfer vector (NeuRet vector), we established immunotoxin (IT)-mediated tract targeting in the primate brain that allows ablation of a neuronal population constituting a particular pathway. Here, we attempted selective removal of the cortico-subthalamic “hyperdirect” pathway. In conjunction with the direct and indirect pathways, the hyperdirect pathway plays a crucial role in motor information processing in the basal ganglia. This pathway links the motor-related areas of the frontal lobe directly to the subthalamic nucleus (STN) without relay at the striatum. After electrical stimulation in the motor-related areas such as the supplementary motor area (SMA), triphasic responses consisting of an early excitation, an inhibition, and a late excitation are usually detected in the internal segment of the globus pallidus (GPi). Several lines of pharmacophysiological evidence suggest that the early excitation may be derived from the hyperdirect pathway. In the present study, the NeuRet vector expressing human interleukin-2 receptor α-subunit was injected into the STN of macaque monkeys. Then, IT injections were made into the SMA. In these monkeys, single-neuron activity in the GPi was recorded in response to the SMA stimulation. We found that the early excitation was largely reduced, with neither the inhibition nor the late excitation affected. The spontaneous firing rate and pattern of GPi neurons remained unchanged. This indicates that IT-mediated tract targeting successfully eliminated the hyperdirect pathway selectively from the basal ganglia circuitry without affecting spontaneous activity of STN neurons. The electrophysiological finding was confirmed with anatomical data obtained from retrograde and anterograde neural tracings. The present results define that the cortically-driven early excitation in GPi neurons is mediated by the hyperdirect pathway. The IT-mediated tract targeting technique will provide us with novel strategies for elucidating various neural network functions

    Morphological Characters of the Thickbody Skate Amblyraja frerichsi (Krefft 1968) (Rajiformes: Rajidae), with Notes on Its Biology

    Get PDF
    Detailed descriptions of morphological features, morphometrics, neurocranium anatomy, clasper structure and egg case descriptions are provided for the thickbody skate Amblyraja frerichsi; a rare, deep-water species from Chile, Argentina and Falkland Islands. The species diagnosis is complemented from new observations and aspects such as colour, size and distribution are described. Geographic and bathymetric distributional ranges are discussed as relevant features of this taxońs biology. Additionally, the conservation status is assessed including bycatch records from Chilean fisheries
    corecore