20 research outputs found

    Validation of a HLA-A2 tetramer flow cytometric method, IFNgamma real time RT-PCR, and IFNgamma ELISPOT for detection of immunologic response to gp100 and MelanA/MART-1 in melanoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HLA-A2 tetramer flow cytometry, IFNγ real time RT-PCR and IFNγ ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis.</p> <p>Methods</p> <p>Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100<sub>209(210M) </sub>and MART-1<sub>26–35(27L)</sub>, IFNγ real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100<sub>209</sub>, gp100<sub>pool</sub>, MART-1<sub>27–35</sub>, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established.</p> <p>Results</p> <p>The validation process demonstrated that the HLA-A2 tetramer, IFNγ real time RT-PCR, and IFNγ ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545–1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000–1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and cell based functional assays are known to have high assay variability. Most importantly, assays were demonstrated to be effective for their intended use. A positive IFNγ response (by RT-PCR and ELISPOT) to gp100 was demonstrated in PBMC from 3 melanoma patients. Another patient showed a positive MART-1 response measured by all 3 validated methods.</p> <p>Conclusion</p> <p>Our results demonstrated the tetramer flow cytometry assay, IFNγ real-time RT-PCR, and INFγ ELISPOT met validation criteria. Validation approaches provide a guide for others in the field to validate these and other similar assays for assessment of patient T cell response. These methods can be applied not only to cancer vaccines but to other therapeutic proteins as part of immunogenicity and safety analyses.</p

    Selective Deletion of PTEN in Dopamine Neurons Leads to Trophic Effects and Adaptation of Striatal Medium Spiny Projecting Neurons

    Get PDF
    The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt) thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA) neurons (Pten KO mice). The resulting mutant mice showed neuronal hypertrophy, and an increased number of dopaminergic neurons and fibers in the ventral mesencephalon. Interestingly, quantitative microdialysis studies in Pten KO mice revealed no alterations in basal DA extracellular levels or evoked DA release in the dorsal striatum, despite a significant increase in total DA tissue levels. Striatal dopamine receptor D1 (DRD1) and prodynorphin (PDyn) mRNA levels were significantly elevated in KO animals, suggesting an enhancement in neuronal activity associated with the striatonigral projection pathway, while dopamine receptor D2 (DRD2) and preproenkephalin (PPE) mRNA levels remained unchanged. In addition, PTEN inactivation protected DA neurons and significantly enhanced DA-dependent behavioral functions in KO mice after a progressive 6OHDA lesion. These results provide further evidence about the role of PTEN in the brain and suggest that manipulation of the PTEN/Akt signaling pathway during development may alter the basal state of dopaminergic neurotransmission and could provide a therapeutic strategy for the treatment of Parkinson's disease, and other neurodegenerative disorders

    Escitalopram Administration, Neuroplastic Effects and Relearning: A Diffusion Tensor Imaging Study in Healthy Individuals

    Full text link
    AbstractBackgroundNeuroplastic processes are influenced by selective serotonergic reuptake inhibitors, while learning in conjunction with the administration of serotonergic agents alters white matter microstructure in humans. The goal of this double-blind, placebo-controlled imaging study was to investigate the influence of escitalopram on white matter plasticity during (re)learning.MethodsSeventy-one healthy individuals (age = 25.6±5.0, 43 females) underwent 3 diffusion magnetic resonance imaging sessions: at baseline, after 3-weeks of associative learning (emotional/non-emotional content) and after relearning shuffled associations for an additional 3 weeks. During the relearning phase, subjects received daily escitalopram 10 mg or placebo orally. Statistical analysis was performed with statistical parametric mapping (SPM) and using sandwich estimator.ResultsA three-way and two-way rmANOVA was conducted to analyze the effects of escitalopram on AD, FA, MD and RD during the learning and relearning period. We found no significant three-way or two-way interactions for each DTI metrics (pFDR &gt; 0.05), thus neither after 3 nor after 6 weeks we found significant changes in white matter microstructure.ConclusionWe examined neither an effect of escitalopram nor learning (or relearning) interventions on different DTI metrics. The duration and intensity of study interventions (i.e. administration of escitalopram and learning as the relearning task) might have been chosen insufficiently to induce detectable alterations. Previous studies examining the effects of SSRIs on white matter tracts in humans are underrepresented, but do mainly yield towards non-significant findings. The results implicate that escitalopram does not impact white matter microstructures in healthy subjects.</jats:sec

    Changes to hypothalamic volume and associated subunits during gender-affirming hormone therapy

    No full text
    202411 bcchVersion of RecordOthersAustrian Science Fund (FWF); Austrian Academy of Sciences at the Department of Psychiatry and Psychotherapy, Medical University of Vienna; MDPhD Excellence Program of the Medical University of Vienna; Austrian National Union of Students; NARSAD Young Investigator grant; Austrian Science Fund Project; Medizinisch-Wissenschaftlichen Fonds des Bürgermeisters der Bundeshauptstadt Wien Project; Interdisciplinary translational brain research cluster (ITHC) with highfield MR from the Federal Ministry of Science; Research and Economy (BMWFW), AustriaPublishedC

    Effects of Escitalopram and Relearning on Cortical and Subcortical Grey Matter in Healthy Humans

    Full text link
    AbstractThe antidepressant effect of selective serotonin reuptake inhibitors (SSRI) is related to increased neuroplasticity during relearning. Stress-induced dendritic atrophy in key brain areas for learning and memory such as the hippocampus and prefrontal cortex is reversed by SSRI treatment. This finding is accompanied by behavioral stabilization. The aim of this study was to investigated serotonergic modulation effects on structural neuroplasticity (cortical thickness, subcortical volumes) during relearning in healthy subjects. Participants performed daily associative learning tasks over 3 weeks followed by a 3-week relearning phase combined with intake of the SSRI escitalopram or placebo. Evidence suggests that SSRIs promote the brains susceptibility to change on the basis of environment factors. We found no effect of SSRI on grey matter measures during relearning. Here, non-findings might be a consequence of the implemented intensity and duration of study interventions. With sparse literature on healthy participants in this field, future studies will have to further elucidate SSRIs properties on relearning and structural neuroplasticity.</jats:p

    Effects of sex hormones on brain GABA and glutamate levels in a cis- and transgender cohort

    Full text link
    AbstractSex hormones affect the GABAergic and glutamatergic neurotransmitter system as demonstrated in animal studies. However, human research has mostly been correlational in nature. Here, we aimed at substantiating causal interpretations of the interaction between sex hormones and neurotransmitter function by using magnetic resonance spectroscopy imaging (MRSI) to study the effect of gender-affirming hormone treatment (GHT) in transgender individuals.Fifteen trans men (TM) with a DSM-5 diagnosis of gender dysphoria, and 15 age-matched cisgender women (CW) underwent MRSI before and after at least 12 weeks of GHT. Additionally, sex differences in neurotransmitter levels were evaluated in an independent sample of 80 cisgender men and 79 cisgender women. Mean GABA+ (a combination of GABA and macromolecules) and Glx (a combination of glutamate and glutamine) ratios to total creatine (GABA+/tCr, Glx/tCr) were calculated in five predefined regions-of-interest (hippocampus, insula, pallidum, putamen and thalamus).Linear mixed models analysis revealed a significant measurement by gender identity effect (pcorr. = 0.048) for GABA+/tCr ratios in the hippocampus, with the TM cohort showing decreased GABA+/tCr levels after GHT compared to CW. Moreover, analysis of covariance showed a significant sex difference in insula GABA+/tCr ratios (pcorr. = 0.049), indicating elevated GABA levels in cisgender women compared to cisgender men.Our study demonstrates GHT treatment-induced GABA+/tCr reductions in the hippocampus, indicating hormone receptor activation on GABAergic cells and testosterone-induced neuroplastic processes within the hippocampus. Moreover, elevated GABA levels in the female compared to the male insula highlight the importance of including sex as factor in future MRS studies.</jats:p

    Changes to hypothalamic volume and associated subfields during gender-affirming hormone treatment in gender dysphoria

    Full text link
    1.AbstractSex steroid hormones influence hypothalamic micro- and macrostructure in humans and animal models. Neuroimaging studies have suggested that estrogen and anti-androgen treatment decreases volumes of multiple cortical and subcortical brain areas in transgender individuals, including total hypothalamus volume. Here, we aim to further explore potential effects of gender-affirming hormone treatment (GHT) in transgender individuals on hypothalamic volume by providing additional information on hypothalamic subfields.38 transgender men (TM) and 15 transgender women (TW), with gender dysphoria (DSM-5), as well as 32 cisgender women (CW) and 21 cisgender men (CM) underwent two magnetic resonance imaging (MRI) measurements with an interval of at least four months (median interval TM= 134.5 days (interquartile range (IQR): 126-152.25); TW= 149 days (IQR: 126-178.5); CW= 147 days (IQR: 139.75-170.5); CM= 146 days (IQR: 132-247)) between both sessions. In transgender individuals GHT, consisting of estrogen and anti-androgen treatment in TW and testosterone treatment in TM, was initiated directly after the first measurement. To assess how GHT interacts with hypothalamic structures, the hypothalamus and its subunits were segmented using FreeSurfer. Subject group x time interaction effects were evaluated using repeated measures ANCOVA models. The Bonferroni method was used to correct for multiple comparisons.Significant decreases of total hypothalamic volume and associated subunits were detected in TW after estrogen and anti-androgen treatment compared to cisgender groups. Effects were found in the total hypothalamus volume (pcorr= 0.001), the left and right hypothalamus (pcorr= 0.002), the inferior tubular subunit bilaterally (right: pcorr= 0.001; left: pcorr= 0.001), the left superior tubular subunit (pcorr= 0.003) the right anterior inferior subunit (pcorr= 0.002), as well as the right anterior superior subunit (pcorr= 0.0002) of the hypothalamus.Here, we observed significant volumetric effects on the adult human hypothalamus after an interval of at least four months of estrogen and anti-androgen treatment in TW and added knowledge on associated subfields. Further studies investigating influences of sex steroid hormones on brain structure and functional connections are still needed.</jats:p

    Enhancement of Apoptosis by Titanium Alloy Internal Fixations during Microwave Treatments for Fractures: An Animal Study

    No full text
    Microwaves are used in one method of physical therapy and can increase muscle tissue temperature which is useful for improving muscle, tendon and bone injuries. In the study, we sought to determine whether titanium alloy internal fixations influence apoptosis in tissues subjected to microwave treatments at 2,450 MHz and 40 W during the healing of fractures because this issue is not yet fully understood.In this study, titanium alloy internal fixations were used to treat 3.0-mm transverse osteotomies in the middle of New Zealand rabbits' femurs. After the operation, 30-day microwave treatments were applied to the 3.0 mm transverse osteotomies 3 days after the operation. The changes in the temperatures of the muscle tissues in front of the implants or the 3.0 mm transverse osteotomies were measured during the microwave treatments. To characterize the effects of titanium alloy internal fixations on apoptosis in the muscles after microwave treatment, we performed TUNEL assays, fluorescent real-time (quantitative) PCR, western blotting analyses, reactive oxygen species (ROS) detection and transmission electron microscopy examinations.The temperatures were markedly increased in the animals with the titanium alloy implants. Apoptosis in the muscle cells of the implanted group was significantly more extensive than that in the non-implanted control group at different time points. Transmission electron microscopy examinations of the skeletal muscles of the implanted groups revealed muscular mitochondrial swelling, vacuolization. ROS, Bax and Hsp70 were up-regulated, and Bcl-2 was down-regulated in the implanted group.Our results suggest that titanium alloy internal fixations caused greater muscular tissue cell apoptosis following 2,450 MHz, 40 W microwave treatments in this rabbit femur fracture models
    corecore