1,294 research outputs found
The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder
In their classical work (Proc. Natl. Acad. Sci. USA, 1981, 78:6840-6844),
Goldbeter and Koshland mathematically analyzed a reversible covalent
modification system which is highly sensitive to the concentration of
effectors. Its signal-response curve appears sigmoidal, constituting a
biochemical switch. However, the switch behavior only emerges in the
"zero-order region", i.e. when the signal molecule concentration is much lower
than that of the substrate it modifies. In this work we showed that the
switching behavior can also occur under comparable concentrations of signals
and substrates, provided that the signal molecules catalyze the modification
reaction in cooperation. We also studied the effect of dynamic disorders on the
proposed biochemical switch, in which the enzymatic reaction rates, instead of
constant, appear as stochastic functions of time. We showed that the system is
robust to dynamic disorder at bulk concentration. But if the dynamic disorder
is quasi-static, large fluctuations of the switch response behavior may be
observed at low concentrations. Such fluctuation is relevant to many biological
functions. It can be reduced by either increasing the conformation
interconversion rate of the protein, or correlating the enzymatic reaction
rates in the network.Comment: 23 pages, 4 figures, accepted by PLOS ON
The role of input noise in transcriptional regulation
Even under constant external conditions, the expression levels of genes
fluctuate. Much emphasis has been placed on the components of this noise that
are due to randomness in transcription and translation; here we analyze the
role of noise associated with the inputs to transcriptional regulation, the
random arrival and binding of transcription factors to their target sites along
the genome. This noise sets a fundamental physical limit to the reliability of
genetic control, and has clear signatures, but we show that these are easily
obscured by experimental limitations and even by conventional methods for
plotting the variance vs. mean expression level. We argue that simple, global
models of noise dominated by transcription and translation are inconsistent
with the embedding of gene expression in a network of regulatory interactions.
Analysis of recent experiments on transcriptional control in the early
Drosophila embryo shows that these results are quantitatively consistent with
the predicted signatures of input noise, and we discuss the experiments needed
to test the importance of input noise more generally.Comment: 11 pages, 5 figures minor correction
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli
Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces
The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research
A Search for Dark Higgs Bosons
Recent astrophysical and terrestrial experiments have motivated the proposal
of a dark sector with GeV-scale gauge boson force carriers and new Higgs
bosons. We present a search for a dark Higgs boson using 516 fb-1 of data
collected with the BABAR detector. We do not observe a significant signal and
we set 90% confidence level upper limits on the product of the Standard
Model-dark sector mixing angle and the dark sector coupling constant.Comment: 7 pages, 5 postscript figures, published version with improved plots
for b/w printin
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev
Peer reviewe
- …
