1,257 research outputs found
Detecting the long-distance structure of the X(3872)
We study the decay within a molecular picture for the state. This decay mode is more sensitive to the long-distance structure of the resonance than its and decays, which are mainly controlled by the details of the wave function at short distances. We show that the final state interaction can be important, and that a precise measurement of this partial decay width can provide valuable information on the interaction strength between the charm mesons
National survey and analysis of barriers to the utilisation of the 2005 Mental Capacity Act by people with bipolar disorder in England and Wales
Background: The Mental Capacity Act (2005) (MCA) provides a legal framework for advance planning for both health and welfare in England and Wales for people if they lose mental capacity e.g. through mania or severe depression.
Aims: To determine the proportion of people with bipolar disorder (BD) who utilise advance planning, their experience of using it and barriers to its implementation.
Methods: National survey of people with clinical diagnosis of BD of their knowledge, use and experience of the MCA. Thematically analysed qualitative interviews with maximum variance sample of people with BD.
Results: 544 respondents with BD participated in the survey; 18 in the qualitative study. 403 (74.1%) believed making plans about their personal welfare if they lost capacity to be very important. 199 (36.6%) participants knew about the MCA. 54 (10%), 62 (11%) and 21 (4%) participants made advanced decisions to refuse treatment, advance statements and lasting power of attorney respectively. Barriers included not understanding its different forms, unrealistic expectations and advance plans ignored by services.
Conclusion: In BD the demand for advance plans about welfare with loss of capacity was high but utilisation of the MCA was low with barriers at service user, clinician and organisation levels
The Salmonella effector SseJ disrupts microtubule dynamics when ectopically expressed in Normal Rat Kidney cells
Salmonella effector protein SseJ is secreted by Salmonella into the host cell cytoplasm where it can then modify host cell processes. Whilst host cell small GTPase RhoA has previously been shown to activate the acyl-transferase activity of SseJ we show here an un-described effect of SseJ protein production upon microtubule dynamism. SseJ prevents microtubule collapse and this is independent of SseJ's acyl-transferase activity. We speculate that the effects of SseJ on microtubules would be mediated via its known interactions with the small GTPases of the Rho family
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
The challenges of implementing packaged hospital electronic prescribing and medicine administration systems in UK hospitals: premature purchase of immature solutions?
The UK National Health Service is making major efforts to implement Hospital Electronic Prescribing and Medicine Administration (HEPMA) to improve patient safety and quality of care. Substantial public investments have attracted a wide range of UK and overseas suppliers offering Commercial-Off –The-Shelf (COTS) solutions. A lack of (UK) implementation experience and weak supplier-user relationships are reflected in systems with limited configurability, poorly matched to the needs and practices of English hospitals. This situation echoes the history of comparable corporate information infrastructures - Enterprise Resource Planning systems - in the 1980s/1990s. UK government intervention prompted a similar swarming of immature, often unfinished, products into the market. This resulted, in both cases, in protracted and difficult implementation processes as vendors and adopters struggled to get the systems to work and match the circumstances of the adopting organisations. An analysis of the influence of the Installed Base on Information Infrastructures should explore how the evolution of COTS solutions is conditioned by the structure of adopter and vendor ‘communities’
Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field
“Medically unexplained” symptoms and symptom disorders in primary care: prognosis-based recognition and classification
Background: Many patients consult their GP because they experience bodily symptoms. In a substantial proportion of
cases, the clinical picture does not meet the existing diagnostic criteria for diseases or disorders. This may be because
symptoms are recent and evolving or because symptoms are persistent but, either by their character or the negative
results of clinical investigation cannot be attributed to disease: so-called “medically unexplained symptoms” (MUS).
MUS are inconsistently recognised, diagnosed and managed in primary care. The specialist classification systems
for MUS pose several problems in a primary care setting. The systems generally require great certainty about
presence or absence of physical disease, they tend to be mind-body dualistic, and they view symptoms from a
narrow specialty determined perspective. We need a new classification of MUS in primary care; a classification
that better supports clinical decision-making, creates clearer communication and provides scientific underpinning
of research to ensure effective interventions.
Discussion: We propose a classification of symptoms that places greater emphasis on prognostic factors.
Prognosis-based classification aims to categorise the patient’s risk of ongoing symptoms, complications, increased
healthcare use or disability because of the symptoms. Current evidence suggests several factors which may be
used: symptom characteristics such as: number, multi-system pattern, frequency, severity. Other factors are:
concurrent mental disorders, psychological features and demographic data. We discuss how these characteristics may
be used to classify symptoms into three groups: self-limiting symptoms, recurrent and persistent symptoms, and
symptom disorders. The middle group is especially relevant in primary care; as these patients generally have reduced
quality of life but often go unrecognised and are at risk of iatrogenic harm. The presented characteristics do not
contain immediately obvious cut-points, and the assessment of prognosis depends on a combination of several factors.
Conclusion: Three criteria (multiple symptoms, multiple systems, multiple times) may support the classification into
good, intermediate and poor prognosis when dealing with symptoms in primary care. The proposed new classification
specifically targets the patient population in primary care and may provide a rational framework for decision-making in
clinical practice and for epidemiologic and clinical research of symptoms
Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation
Background
Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation.
Results
We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum.
Conclusions
The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
