2,518 research outputs found
INFLUENCE OF PLUMES FROM BIOMASS BURNING ON ATMOSPHERIC CHEMISTRY OVER THE EQUATORIAL AND TROPICAL SOUTH-ATLANTIC DURING CITE-3
The case for hypervirulence through gene deletion in Mycobacterium tuberculosis.
Deletion of genes in a pathogen is commonly associated with a reduction in its ability to cause disease. However, some rare cases have been described in the literature whereby deletion of a gene results in an increase in virulence. Recently, there have been several reports of hypervirulence resulting from gene deletion in Mycobacterium tuberculosis. Here, we explore this phenomenon in the context of the interaction between the pathogen and the host response
Diurnal preference and sleep quality: same genes? A study of young adult twins
The aims of this study were to examine the genetic and environmental influences on diurnal preference and sleep quality, the association between these phenotypes, the genetic and environmental influences on this association, and the magnitude of overlap between these influences. Using a twin design, data on diurnal preference (measured by the Morningness-Eveningness Questionnaire) and sleep quality (measured by the Pittsburgh Sleep Quality Index) were collected from 420 monozygotic twins, 773 dizygotic twins, and 329 siblings (mode age = 20 yrs, range = 18–27 yrs) from a population-based twin registry across the UK. Univariate analyses indicated that dominance genetic influence accounted for 52% and non-shared environment 48% of variance in diurnal preference. For sleep quality, additive genetic influence explained 43% and non-shared environment 57% of the variance. The bivariate analysis indicated a significant association between greater eveningness preference and poorer sleep quality (r = .27). There was substantial overlap in the additive genetic influences on both phenotypes (rA = .57), and overlap in the dominance genetic influences common to both phenotypes was almost absolute (rD = .99). Overlap in non-shared environment was much smaller (rE = .02). Additive genetic influence accounted for 2% of the association, dominance genetic influence accounted for 94%, and non-shared environmental influences accounted for the remaining 4%. The substantial overlap in genetic influence between these phenotypes indicates that similar genes are important for diurnal preference and sleep quality. Therefore, those genes already known to influence one phenotype may be possible candidates to explore with regards to the other phenotype
Chemical characteristics of Pacific tropospheric air in the region of the Intertropical Convergence Zone and South Pacific Convergence Zone
The Pacific Exploratory Mission (PEM)-Tropics provided extensive aircraft data to study the atmospheric chemistry of tropospheric air in Pacific Ocean regions, extending from Hawaii to New Zealand and from Fiji to east of Easter Island. This region, especially the tropics, includes some of the cleanest tropospheric air of the world and, as such, is important for studying atmospheric chemical budgets and cycles. The region also provides a sensitive indicator of the global-scale impact of human activity on the chemistry of the troposphere, and includes such important features as the Pacific "warm pool," the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), and Walker Cell circulations. PEM-Tropics was conducted from August to October 1996. The ITCZ and SPCZ are major upwelling regions within the South Pacific and, as such, create boundaries to exchange of tropospheric air between regions to the north and south. Chemical data obtained in the near vicinity of the ITCZ and the SPCZ are examined. Data measured within the convergent zones themselves are not considered. The analyses show that air north and south of the convergent zones have different chemical signatures, and the signatures are reflective of the source regions and transport histories of the air. Air north of the ITCZ shows a modest urban/industrialized signature compared to air south of the ITCZ. The chemical signature of air south of the SPCZ is dominated by combustion emissions from biomass burning, while air north of the SPCZ is relatively clean and of similar composition to ITCZ south air. Chemical signature differences of air north and south of the zones are most pronounced at altitudes below 5 km, and, as such, show that the ITCZ and SPCZ are effective low-altitude barriers to the transport of tropospheric air. At altitudes of 8 to 10 km, chemical signatures are less dissimilar, and air backward trajectories (to 10 days) show cross-convergent-zone flow. At altitudes below about 5 km, little cross-zonal flow is observed. Chemical signatures presented include over 30 trace chemical species including ultrafine, fine, and heated-fine (250°C) aerosol. Copyright 1999 by the American Geophysical Union
Gauss-Bonnet Black Holes and Heavy Fermion Metals
We consider charged black holes in Einstein-Gauss-Bonnet Gravity with
Lifshitz boundary conditions. We find that this class of models can reproduce
the anomalous specific heat of condensed matter systems exhibiting
non-Fermi-liquid behaviour at low temperatures. We find that the temperature
dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet
coupling parameter for a given value of the Lifshitz scaling parameter. We
propose that this class of models is dual to a class of models of
non-Fermi-liquid systems proposed by Castro-Neto et.al.Comment: 17 pages, 6 figures, pdfLatex; small corrections to figure 10 in this
versio
A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells
This is the final version of the article. Available from Elsevier via the DOI in this record.Scaling laws serve as a tool to convert the five parameters in a lumped one-diode electrical model of a photovoltaic (PV) cell/module/panel under indoor standard test conditions (STC) into the parameters under any outdoor conditions. By using the transformed parameters, a current-voltage curve can be established under any outdoor conditions to predict the PV cell/module/panel performance. A scaling law is developed for PV modules with and without crossed compound parabolic concentrator (CCPC) based on the experimental current-voltage curves of six flat monocrystalline PV modules collected from literature at variable irradiances and cell temperatures by using nonlinear least squares method. Experiments are performed to validate the model and method on a monocrystalline PV cell at various irradiances and cell temperatures. The proposed scaling law is compared with the existing one, and the former exhibits a much better accuracy when the cell temperature is higher than 40 °C. The scaling law of a triple junction flat PV cell is also compared with that of the monocrystalline cell and the CCPC effects on the scaling law are investigated with the monocrystalline PV cell. It is identified that the CCPCs impose a more significant influence on the scaling law for the monocrystalline PV cell in comparison with the triple junction PV cell. The proposed scaling law is applied to predict the electrical performance of PV/thermal modules with CCPC.The authors gratefully acknowledge the EPSRC Solar Challenge project SUNTRAP (EP/K022156/1) and Sȇr Cymru National Research Network grant 152 for financial support in the UK
Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.
Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio
Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors
This is the final version of the article. Available from Elsevier via the DOI in this record.Transient and steady-state multiphysics numerical simulations are performed to investigate the thermal and electrical performances of a thermoelectric generator (TEG) module placed between hot and cold blocks. Effects of heat radiation, leg length and Seebeck coefficient on the TEG thermal and electrical performances are identified. A new correlation for the Seebeck coefficient with temperature is proposed. Radiation effects on the thermal and electric performances are found to be negligible under both transient and steady-state conditions. The leg length of the TEG module shows a considerable influence on the electrical performance but little on the thermal performance under transient conditions. A nearly linear temperature profile on a leg of the TEG module is identified. The temperature profile of the substrate surfaces is non-uniform, especially in the contacted areas between the straps (tabs) and the substrates.The work is supported by EPSRC SUPERGEN Solar Challenge with grant: EP/K022156/1-Scalable Solar Thermoelectrics and Photovoltaics (SUNTRAP)
- …
