51 research outputs found

    Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China

    Get PDF
    During the last decade, China's agro-food production has increased rapidly and been accompanied by the challenge of increasing greenhouse gas (GHG) emissions and other environmental pollutants from fertilizers, pesticides, and intensive energy use. Understanding the energy use and environmental impacts of crop production will help identify environmentally damaging hotspots of agro-production, allowing environmental impacts to be assessed and crop management strategies optimized. Conventional farming has been widely employed in wolfberry (Lycium barbarum) cultivation in China, which is an important cash tree crop not only for the rural economy but also from an ecological standpoint. Energy use and global warming potential (GWP) were investigated in a wolfberry production system in the Yellow River irrigated Jingtai region of Gansu. In total, 52 household farms were randomly selected to conduct the investigation using questionnaires. Total energy input and output were 321,800.73 and 166,888.80 MJ ha−1, respectively, in the production system. The highest share of energy inputs was found to be electricity consumption for lifting irrigation water, accounting for 68.52%, followed by chemical fertilizer application (11.37%). Energy use efficiency was 0.52 when considering both fruit and pruned wood. Nonrenewable energy use (88.52%) was far larger than the renewable energy input. The share of GWP of different inputs were 64.52% electricity, 27.72% nitrogen (N) fertilizer, 5.07% phosphate, 2.32% diesel, and 0.37% potassium, respectively. The highest share was related to electricity consumption for irrigation, followed by N fertilizer use. Total GWP in the wolfberry planting system was 26,018.64 kg CO2 eq ha−1 and the share of CO2, N2O, and CH4 were 99.47%, 0.48%, and negligible respectively with CO2 being dominant. Pathways for reducing energy use and GHG emission mitigation include: conversion to low carbon farming to establish a sustainable and cleaner production system with options of raising water use efficiency by adopting a seasonal gradient water pricing system and advanced irrigation techniques; reducing synthetic fertilizer use; and policy support: smallholder farmland transfer (concentration) for scale production, credit (small- and low-interest credit) and tax breaks

    Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of <it>Pax3 </it>is therefore an important endeavour in elucidating the myogenic gene regulatory network.</p> <p>Results</p> <p>We have undertaken a screen in the mouse embryo which employs a <it>Pax3<sup>GFP </sup></it>allele that permits isolation of Pax3 expressing cells by flow cytometry and a <it>Pax3<sup>PAX3-FKHR </sup></it>allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the <it>Pax3 </it>mutant phenotype. Microarray comparisons were carried out between <it>Pax3<sup>GFP/+ </sup></it>and <it>Pax3<sup>GFP/PAX3-FKHR </sup></it>preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function <it>Pax3 </it>mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount <it>in situ </it>hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation.</p> <p>Conclusions</p> <p>Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as <it>Myf5 </it>are controlled positively, whereas the effect of <it>Pax3 </it>on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, <it>Pax7 </it>and also <it>Hdac5 </it>which is a potential repressor of <it>Foxc2</it>, are subject to positive control by <it>Pax3</it>.</p

    Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels.

    Get PDF
    Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7×10-9 at rs8018720 in SEC23A, and P = 1.9×10-14 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels

    Vitamin D in health and disease: Current perspectives

    Get PDF
    Despite the numerous reports of the association of vitamin D with a spectrum of development, disease treatment and health maintenance, vitamin D deficiency is common. Originating in part from the diet but with a key source resulting from transformation by exposure to sunshine, a great deal of the population suffers from vitamin D deficiency especially during winter months. It is linked to the treatment and pathogenesis and/or progression of several disorders including cancer, hypertension, multiple sclerosis, rheumatoid arthritis, osteoporosis, muscle weakness and diabetes. This widespread deficiency of Vitamin D merits consideration of widespread policies including increasing awareness among the public and healthcare professionals

    Sex-Based Differences in Prevalence and Outcomes of Common Acute Conditions Associated With Type 2 Myocardial Infarction.

    No full text
    Little is known about the association between acute prevalent conditions in patients with type 2 Myocardial Infarction (T2MI) and clinical outcomes, particularly between genders. Using the Nationwide Inpatient Sample (2017), we examined outcomes of T2MI in patients stratified by prevalent associated conditions (renal failure, decompensated heart failure, infection, acute respiratory failure, cardiac arrhythmias, bleeding) and gender. Multivariable logistic regression was performed to assess the odds ratios (OR) of in-hospital all-cause mortality in each of the study groups. A total of 38,715 T2MI patients were included in the analysis, of which 47.9% (n = 18,540) were females. Renal failure was the most common prevalent condition in both genders (males: 60%; females: 52.6%). Acute respiratory failure was associated with the greatest odds of mortality (OR 5.46, 95% confidence interval (CI) 5.02 to 5.94) when compared with other conditions: renal failure (OR 2.20 95% CI 2.01 to 2.40), infections (OR 2.96 95% CI 2.72 to 3.21), major bleeding (OR 1.71 95% CI 1.52 to 1.93), arrhythmias (OR 1.30 95% CI 1.19 to 1.43) and decompensated heart failure (OR 0.71, 95% CI 0.65 to 0.77). However, there was no difference in mortality between genders for all acute conditions except renal failure (females OR: 1.02, 95% CI 1.02 to 1.02, p = 0.011). In conclusion, in-hospital mortality after T2MI differs according to the underlying acute condition, with acute respiratory failure being associated with the highest rate of mortality. No significant differences in mortality were observed between genders amongst all prevalent acute conditions, with the exception of renal failure which was marginally higher in females

    Mortality Rates Across 25-Hydroxyvitamin D (25[OH]D) Levels among Adults with and without Estimated Glomerular Filtration Rate <60 ml/min/1.73 m2: The Third National Health and Nutrition Examination Survey

    Get PDF
    BACKGROUND: Previous studies exploring the association between 25[OH]D levels and mortality in adults with and without kidney disease utilized 25[OH]D thresholds that have recently been scrutinized by the Institute of Medicine Committee to Review Dietary References Intakes for Vitamin D and Calcium. OBJECTIVE: We explored all-cause mortality rates across the spectrum of 25[OH]D levels over an eighteen-year follow-up among adults with and without an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m(2). DESIGN: The study included 1,097 U.S. adults with eGFR <60 ml/min/1.73 m(2) and 14, 002 adults with eGFR ≥60 ml/min/1.73 m(2). Mortality rates and rate ratios (RR) across 25[OH]D groups were calculated with Poisson regression and restricted cubic splines while adjusting for covariates. RESULTS: Prevalence of 25[OH]D levels <30 and <20 ng/ml among adults with eGFR <60 ml/min/1.73 m(2) was 76.5% (population estimate 6.2 million) and 35.4% (population estimate 2.9 million), respectively. Among adults with eGFR ≥60 ml/min/1.73 m(2), 70.5% had 25[OH]D levels <30 ng/ml (population estimate 132.2 million) while 30.3% had 25[OH]D levels <20 ng/ml (population estimate 56.8 million). Significantly higher mortality rates were noted among individuals with 25[OH]D levels <12 ng/ml compared to referent group (24 to <30 ng/ml): RR1.41 (95% CI 1.17, 1.71) among individuals with eGFR <60 ml/min/1.73 m(2) and RR 1.32 (95% CI 1.13, 1.56) among individuals with eGFR ≥60 ml/min/1.73 m(2) after adjustment for covariates including co-morbid conditions. Mortality rates were fairly similar across all 25[OH]D groups with levels >20 ng/ml after adjustment for all covariates. CONCLUSIONS: Regardless of presence of eGFR <60 ml/min/1.73 m(2), mortality rates across groups with 25[OH]D levels 20–40 ng/ml are similar
    corecore