36 research outputs found
Gadd45α activity is the principal effector of Shigella mitochondria-dependent epithelial cell death in vitro and ex vivo
Modulation of death is a pathogen strategy to establish residence and promote survival in host cells and tissues. Shigella spp. are human pathogens that invade colonic mucosa, where they provoke lesions caused by their ability to manipulate the host cell responses. Shigella spp. induce various types of cell death in different cell populations. However, they are equally able to protect host cells from death. Here, we have investigated on the molecular mechanisms and cell effectors governing the balance between survival and death in epithelial cells infected with Shigella. To explore these aspects, we have exploited both, the HeLa cell invasion assay and a novel ex vivo human colon organ culture model of infection that mimics natural conditions of shigellosis. Our results definitely show that Shigella induces a rapid intrinsic apoptosis of infected cells, via mitochondrial depolarization and the ensuing caspase-9 activation. Moreover, for the first time we identify the eukaryotic stress-response factor growth arrest and DNA damage 45α as a key player in the induction of the apoptotic process elicited by Shigella in epithelial cells, revealing an unexplored role of this molecule in the course of infections sustained by invasive pathogens
Building a Portuguese Coalition for Biodiversity Genomics
The diverse physiography of the Portuguese land and marine territory, spanning from continental Europe to the Atlantic archipelagos, has made it an important repository of biodiversity throughout the Pleistocene glacial cycles, leading to a remarkable diversity of species and ecosystems. This rich biodiversity is under threat from anthropogenic drivers, such as climate change, invasive species, land use changes, overexploitation or pathogen (re)emergence. The inventory, characterization and study of biodiversity at inter- and intra-specific levels using genomics is crucial to promote its preservation and recovery by informing biodiversity conservation policies, management measures and research. The participation of researchers from Portuguese institutions in the European Reference Genome Atlas (ERGA) initiative, and its pilot effort to generate reference genomes for European biodiversity, has reinforced the establishment of Biogenome Portugal. This nascent institutional network will connect the national community of researchers in genomics. Here, we describe the Portuguese contribution to ERGA’s pilot effort, which will generate high-quality reference genomes of six species from Portugal that are endemic, iconic and/or endangered, and include plants, insects and vertebrates (fish, birds and mammals) from mainland Portugal or the Azores islands. In addition, we outline the objectives of Biogenome Portugal, which aims to (i) promote scientific collaboration, (ii) contribute to advanced training, (iii) stimulate the participation of institutions and researchers based in Portugal in international biodiversity genomics initiatives, and (iv) contribute to the transfer of knowledge to stakeholders and engaging the public to preserve biodiversity. This initiative will strengthen biodiversity genomics research in Portugal and fuel the genomic inventory of Portuguese eukaryotic species. Such efforts will be critical to the conservation of the country’s rich biodiversity and will contribute to ERGA’s goal of generating reference genomes for European species.info:eu-repo/semantics/publishedVersio
Building a Portuguese coalition for biodiversity genomics
The diverse physiography of the Portuguese land and marine territory, spanning from continental Europe to the Atlantic archipelagos, has made it an important repository of biodiversity throughout the Pleistocene glacial cycles, leading to a remarkable diversity of species and ecosystems. This rich biodiversity is under threat from anthropogenic drivers, such as climate change, invasive species, land use changes, overexploitation, or pathogen (re)emergence. The inventory, characterisation, and study of biodiversity at inter- and intra-specific levels using genomics is crucial to promote its preservation and recovery by informing biodiversity conservation policies, management measures, and research. The participation of researchers from Portuguese institutions in the European Reference Genome Atlas (ERGA) initiative and its pilot effort to generate reference genomes for European biodiversity has reinforced the establishment of Biogenome Portugal. This nascent institutional network will connect the national community of researchers in genomics. Here, we describe the Portuguese contribution to ERGA’s pilot effort, which will generate high-quality reference genomes of six species from Portugal that are endemic, iconic, and/or endangered and include plants, insects, and vertebrates (fish, birds, and mammals) from mainland Portugal or the Azores islands. In addition, we outline the objectives of Biogenome Portugal, which aims to (i) promote scientific collaboration, (ii) contribute to advanced training, (iii) stimulate the participation of institutions and researchers based in Portugal in international biodiversity genomics initiatives, and (iv) contribute to the transfer of knowledge to stakeholders and engaging the public to preserve biodiversity. This initiative will strengthen biodiversity genomics research in Portugal and fuel the genomic inventory of Portuguese eukaryotic species. Such efforts will be critical to the conservation of the country’s rich biodiversity and will contribute to ERGA’s goal of generating reference genomes for European species.info:eu-repo/semantics/publishedVersio
The epithelial cholinergic system of the airways
Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs
The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.
ABSTRACT: A global genome database of all of Earth’s species diversity could be a treasure trove of scientific discoveries. However, regardless of the major advances in genome sequencing technologies, only a tiny fraction of species have genomic information available. To contribute to a more complete planetary genomic database, scientists and institutions across the world have united under the Earth BioGenome Project (EBP), which plans to sequence and assemble high-quality reference genomes for all ∼1.5 million recognized eukaryotic species through a stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are to be sequenced in just four years, worldwide participation in the project will be fundamental to success. As the European node of the EBP, the European Reference Genome Atlas (ERGA) seeks to implement a new decentralised, accessible, equitable and inclusive model for producing high-quality reference genomes, which will inform EBP as it scales. To embark on this mission, ERGA launched a Pilot Project to establish a network across Europe to develop and test the first infrastructure of its kind for the coordinated and distributed reference genome production on 98 European eukaryotic species from sample providers across 33 European countries. Here we outline the process and challenges faced during the development of a pilot infrastructure for the production of reference genome resources, and explore the effectiveness of this approach in terms of high-quality reference genome production, considering also equity and inclusion. The outcomes and lessons learned during this pilot provide a solid foundation for ERGA while offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/publishedVersio
Author Correction: The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.
The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics
A genomic database of all Earth’s eukaryotic species could contribute to many scientific discoveries; however, only a tiny fraction of species have genomic information available. In 2018, scientists across the world united under the Earth BioGenome Project (EBP), aiming to produce a database of high-quality reference genomes containing all ~1.5 million recognized eukaryotic species. As the European node of the EBP, the European Reference Genome Atlas (ERGA) sought to implement a new decentralised, equitable and inclusive model for producing reference genomes. For this, ERGA launched a Pilot Project establishing the first distributed reference genome production infrastructure and testing it on 98 eukaryotic species from 33 European countries. Here we outline the infrastructure and explore its effectiveness for scaling high-quality reference genome production, whilst considering equity and inclusion. The outcomes and lessons learned provide a solid foundation for ERGA while offering key learnings to other transnational, national genomic resource projects and the EBP.info:eu-repo/semantics/publishedVersio
