10,830 research outputs found
American Medical and Intellectual Reaction to African Health Issues, 1850-1960: From Racialism to Cross-Cultural Medicine
During recent decades, social scientists, particularly anthropologists, sociologists and medical historians, have looked increasingly at how social and cultural factors inform a society\u27s medical community and vice-versa. As Roger Cooter recently stated, ... medicine is a social phenomenon capable of being properly studied only when treated as a part of its social, political, economic and cultural totality. [1] In America, a steady flow of medical sociologists -- most notably Henry E. Sigerist in the 1940s, Talcott Parsons in the 1950s, David Mechanic in the 1960s and 1970s, and Vern and Bonnie Bullough in the 1980s -- contributed numerous empirical studies that revealed that the development of American medicine was shaped moreso by its social and cultural context than clinical discoveries.[2] These studies have demonstrated conclusively that the American health profession\u27s approaches to disease (etiology and therapy), the institutional structure of medical research and care, and public health care policy all have been deeply influenced by socioeconomic and cultural factors specific to historical epochs of evolving American society
"Almost-stable" matchings in the Hospitals / Residents problem with Couples
The Hospitals / Residents problem with Couples (hrc) models the allocation of intending junior doctors to hospitals where couples are allowed to submit joint preference lists over pairs of (typically geographically close) hospitals. It is known that a stable matching need not exist, so we consider min bp hrc, the problem of finding a matching that admits the minimum number of blocking pairs (i.e., is “as stable as possible”). We show that this problem is NP-hard and difficult to approximate even in the highly restricted case that each couple finds only one hospital pair acceptable. However if we further assume that the preference list of each single resident and hospital is of length at most 2, we give a polynomial-time algorithm for this case. We then present the first Integer Programming (IP) and Constraint Programming (CP) models for min bp hrc. Finally, we discuss an empirical evaluation of these models applied to randomly-generated instances of min bp hrc. We find that on average, the CP model is about 1.15 times faster than the IP model, and when presolving is applied to the CP model, it is on average 8.14 times faster. We further observe that the number of blocking pairs admitted by a solution is very small, i.e., usually at most 1, and never more than 2, for the (28,000) instances considered
Operational viewpoint of the X-29A digital flight control system
In the past few years many flight control systems have been implemented as full-authority, full-time digital systems. The digital design has allowed flight control systems to make use of many enhanced elements that are generally considered too complex to implement in an analog system. Examples of these elements are redundant information exchanged between channels to allow for continued operation after multiple failures and multiple variable gain schedules to optimize control of the aircraft throughout its flight envelope and in all flight modes. The introduction of the digital system for flight control also created the problem of obtaining information from the system in an understandable and useful format. This paper presents how the X-29A was dealt with during its operations at NASA Ames-Dryden Flight Research Facility. A brief description of the X-29A control system, a discussion of the tools developed to aid in daily operations, and the troubleshooting of the aircraft are included
Distinct regions of the Swi5 and Ace2 transcription factors are required for specific gene activation
Swi5 and Ace2 are cell cycle-regulated transcription factors that activate expression of early G1-specific genes in Saccharomyces cerevisiae. Swi5 and Ace2 have zinc finger DNA-binding domains that are highly conserved, and the two proteins bind to the same DNA sequences in vitro. Despite this similarity in DNA binding, Swi5 and Ace2 activate different genes in vivo, with Swi5 activating the HO gene and Ace2 activating CTS1 expression. In this report we have used chimeric fusions between Swi5 and Ace2 to determine what regions of these proteins are necessary for promoter-specific activation of HO and CTS1. We have identified specific regions of Swi5 and Ace2 that are required for activation of HO and CTS1, respectively. The Swi5 protein binds HO promoter DNA cooperatively with the Pho2 homeodomain protein, and the HO specificity region of Swi5 identified in the chimeric analysis coincides with the region of Swi5 previously identified that interacts with Pho2 in vitro. Swi5 and Ace2 also activate expression of a number of other genes expressed in G1 phase of the cell cycle, including ASH1, CDC6, EGT2, PCL2, PCL9, RME1, and SIC1. Analysis of the Swi5/Ace2 chimeras shows that distinct regions of Swi5 and Ace2 contribute to the transcriptional activation of some of these other G1-regulated genes
Elaborator reflection : extending Idris in Idris
Many programming languages and proof assistants are defined by elaboration from a high-level language with a great deal of implicit information to a highly explicit core language. In many advanced languages, these elaboration facilities contain powerful tools for program construction, but these tools are rarely designed to be repurposed by users. We describe elaborator reflection, a paradigm for metaprogramming in which the elaboration machinery is made directly available to metaprograms, as well as a concrete realization of elaborator reflection in Idris, a functional language with full dependent types. We demonstrate the applicability of Idris’s reflected elaboration framework to a number of realistic problems, we discuss the motivation for the specific features of its design, and we explore the broader meaning of elaborator reflection as it can relate to other languages.Postprin
Parameterisation of sediment geochemistry for simulating water quality responses to long-term catchment and climate changes in polymictic, eutrophic Lake Rotorua, New Zealand
Numerical models of aquatic ecosystems that couple physics and biogeochemistry are valuable tools in aquatic ecosystem research. These models provide opportunities to test theories and to inform environmental management. In this study, we used the dynamic, process-based hydrodynamic-ecological model DYRESM-CAEDYM to simulate key ecosystem processes of Lake Rotorua, New Zealand, for six 8-year periods between 1920 and 2100 in order to evaluate the potential effects of future changes in land use and climate. Longterm variations in external boundary conditions (e.g. inflows) to the lake ecosystem are incorporated by varying the relevant input files in the DYRESMCAEDYM model. However, quantification of internal lake processes, specifically those at the sediment-water interface, presents a major challenge for long-term simulations. The sediment model within CAEDYM is ‘static’, with assumed constant sediment composition and a relatively simplistic process representation for nutrient and oxygen fluxes between sediment and water. Specifically, the model regulates sediment phosphate and ammonium release according to concentrations of oxidising species (i.e. oxygen and nitrate), and temperature in the overlying water layer. Sediment oxygen demand is controlled by dissolved oxygen concentrations and temperature in the water layer overlying the sediments. We used a ‘trial and error’ approach to estimate parameters for calibrating and validating the model, and regression modelling to infer the parameters beyond the calibration/validation simulation period (2001–2009). We observed a significant relationship in historic monitoring data between the external nitrogen load to the lake and its hypolimnetic oxygen demand as well as the bottom-sediment nitrogen concentrations. This relationship was used to hindcast and forecast model parameters for sediment nutrient release and oxygen demand in the six model simulation periods. The inclusion of a dynamic response of sediment nutrient release and oxygen demand parameters to changes in external nutrient loads enabled a more conceptually concise simulation of water quality for the simulations. This model is currently being used by regional environmental management authorities for developing an Action Plan for the restoration of Lake Rotorua
Longitudinal assessment of age-related change in the dental pulp chamber and age estimation using dental radiographs
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Title from title screen of research.pdf file (viewed on September 28, 2007)Vita.Thesis (Ph. D.) University of Missouri-Columbia 2007.This dissertation presents a new and practical method of adult age estimation with successful tests of its validity and repeatability. Six qualitative criteria evident in oral radiographs were developed from 37 subjects represented on three occasions each. Age was estimated from averaged criterion scores by reduced major axis (Model II) regression incorporating longitudinal information for prediction with cross-sectional data. Spearman correlation of scores to known age was r[subscript s] = 0.82, for 45 subjects aged 17 to 86 years in an independent test set. Mean error of estimated age was 0.08 years (SD 8.3 years). In contrast, longitudinal premolar pulp chamber sizes typically showed Pearson correlations to age of r [almost equal to] -0.50, with no pattern of association by premolar type, sex, or trend over time useful in age estimation. Eleven raters with experience in skeletal analysis ranging from student to professional showed the qualitative method to be independently repeatable using only a written rubric and graphic examples. Raters' scores had Spearman correlations to age of 0.70 [less than] r[subscript s] [less than] 0.85, and a mean error of 0.91 years (SD 13.7 years), in a sample of 20 subjects selected for approximately equal distribution by age and sex. Oral radiography is noninvasive, commonly available to archaeologists and routine in forensic identifications. This qualitative method is applicable in adults through age 90, and may be incorporated into existing protocols to advance assessment of population distribution and individual age.Includes bibliographical reference
Recent developments in firearms noise and hearing conservation: hearing protection fit testing, Noise measurement and hearing surveillance
Review of best management practices for aquatic vegetation control in stormwater ponds, wetlands, and lakes
Auckland Council (AC) is responsible for the development and operation of a stormwater network across the region to avert risks to citizens and the environment.
Within this stormwater network, aquatic vegetation (including plants, unicellular and filamentous algae) can have both a positive and negative role in stormwater management and water quality treatment. The situations where management is needed to control aquatic vegetation are not always clear, and an inability to identify effective, feasible and economical control options may constrain management initiatives. AC (Infrastructure and Technical Services, Stormwater) commissioned this technical report to provide information for decision- making on aquatic vegetation management with in stormwater systems that are likely to experience vegetation-related issues.
Information was collated from a comprehensive literature review, augmented by knowledge held by the authors. This review identified a wide range of management practices that could be potentially employed. It also demonstrated complexities and uncertainties relating to these options that makes the identification of a best management practice difficult. Hence, the focus of this report was to enable users to screen for potential options, and use reference material provided on each option to confirm the best practice to employ for each situation.
The report identifies factors to define whether there is an aquatic vegetation problem (Section 3.0), and emphasises the need for agreed management goals for control (e.g. reduction, mitigation, containment, eradication). Resources to screen which management option(s) to employ are provided (Section 4.0), relating to the target aquatic vegetation, likely applicability of options to the system being managed, indicative cost, and ease of implementation. Initial screening allows users to shortlist potential control options for further reference (Section 5.0).
Thirty-five control options are described (Section 5.0) in sufficient detail to consider applicability to individual sites and species. These options are grouped under categories of biological, chemical or physical control. Biological control options involve the use of organisms to predate, infect or control vegetation growth (e.g. classical biological control) or manipulate conditions to control algal growth (e.g. pest fish removal, microbial products). Chemical control options involve the use of pesticides and chemicals (e.g. glyphosate, diquat), or the use of flocculants and nutrient inactivation products that are used to reduce nutrient loading, thereby decreasing algal growth. Physical control options involve removing vegetation or algal biomass (e.g. mechanical or manual harvesting), or setting up barriers to their growth (e.g. shading, bottom lining, sediment capping).
Preventative management options are usually the most cost effective, and these are also briefly described (Section 6.0). For example, the use of hygiene or quarantine protocols can reduce weed introductions or spread. Catchment- based practices to reduce sediment and nutrient sources to stormwater are likely to assist in the avoidance of algal and possibly aquatic plant problems. Nutrient removal may be a co-benefit where harvesting of submerged weed biomass is undertaken in stormwater systems. It should also be considered that removal of substantial amounts of submerged vegetation may result in a sudden and difficult-to-reverse s witch to a turbid, phytoplankton dominated state. Another possible solution is the conversion of systems that experience aquatic vegetation issues, to systems that are less likely to experience issues.
The focus of this report is on systems that receive significant stormwater inputs, i.e. constructed bodies, including ponds, amenity lakes, wetlands, and highly-modified receiving bodies. However, some information will have application to other natural water bodies
Restoration and Reexamination of Apollo Lunar Dust Detector Data from Original Telemetry Files
We are recovering the original telemetry (Figure I) from the Apollo Dust, Thermal, Radiation Environment Monitor (DTREM) experiment, more commonly known as the Dust Detector, and producing full time resolution (54 second) data sets for release through the Planetary Data System (PDS). The primary objective of the experiment was to evaluate the effect of dust deposition, temperature, and radiation damage on solar cells on the lunar surface. The monitor was a small box consisting of three solar cells and thermistors mounted on the ALSEP (Apollo Lunar Surface Experiments Package) central station. The Dust Detector was carried on Apollo's 11, 12, 14 and 15. The Apollo 11 DTREM was powered by solar cells and only operated for a few months as planned. The Apollo 12, 14, and 15 detectors operated for 5 to 7 years, returning data every 54 seconds, consisting of voltage outputs from the three solar cells and temperatures measured by the three thermistors. The telemetry was received at ground stations and held on the Apollo Housekeeping (known as "Word 33") tapes. made available to the National Space Science Data Center (NSSDC) by Yosio Nakamura (University of Texas Institute for Geophysics). We have converted selected parts of the telemetry into uncalibrated and calibrated output voltages and temperatures
- …
