16,125 research outputs found
Gangs, displaced, and group-based aggression
Many urban areas experienced an alarming growth of gang activity and violence during the end of the 20th and the beginning of the 21st centuries. Gang members, motivated by various factors, commit a variety of different types of violent acts towards rivals and other targets. Our focus involves instances of displaced aggression, which generally refers to situations in which aggression is targeted towards individuals who have either not themselves committed an offense against the aggressor (s), or who provide an offense that is too mild to justify the aggression levels that are expressed towards them. We discuss how social–psychological mechanisms and models of two types of displaced aggression might help explain some aspects of the retaliatory behavior that is expressed by members of street gangs. We also propose general techniques that have the potential to reduce such aggressive behavior
XX/XY Sex Chromosomes in the South American Dwarf Gecko (\u3cem\u3eGonatodes humeralis\u3c/em\u3e)
Sex-specific genetic markers identified using restriction site-associated DNA sequencing, or RADseq, permits the recognition of a species’ sex chromosome system in cases where standard cytogenetic methods fail. Thus, species with male-specific RAD markers have an XX/XY sex chromosome system (male heterogamety) while species with female-specific RAD markers have a ZZ/ZW sex chromosome (female heterogamety). Here, we use RADseq data from 5 male and 5 female South American dwarf geckos (Gonatodes humeralis) to identify an XX/XY sex chromosome system. This is the first confidently known sex chromosome system in a Gonatodes species. We used a low-coverage de novo G. humeralis genome assembly to design PCR primers to validate the male-specificity of a subset of the sex-specific RADseq markers and describe how even modest genome assemblies can facilitate the design of sex-specific PCR primers in species with diverse sex chromosome systems
Directory of aerospace safety specialized information sources
Directory aids safety specialists in locating information sources and individual experts in engineering-related fields. Lists 170 organizations and approximately 300 individuals who can provide safety-related technical information in form of documentation, data, and consulting expertise. Information on hazard and failure cause identification, accident analysis, and materials characteristics are covered
On the dependence of the avalanche angle on the granular layer thickness
A layer of sand of thickness h flows down a rough surface if the inclination
is larger than some threshold value theta which decreases with h. A tentative
microscopic model for the dependence of theta with h is proposed for rigid
frictional grains, based on the following hypothesis: (i) a horizontal layer of
sand has some coordination z larger than a critical value z_c where mechanical
stability is lost (ii) as the tilt angle is increased, the configurations
visited present a growing proportion $_s of sliding contacts. Instability with
respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for
theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure
Resolving the energy levels of a nanomechanical oscillator
The coherent states that describe the classical motion of a mechanical
oscillator do not have well-defined energy, but are rather quantum
superpositions of equally-spaced energy eigenstates. Revealing this quantized
structure is only possible with an apparatus that measures the mechanical
energy with a precision greater than the energy of a single phonon,
. One way to achieve this sensitivity is by engineering a
strong but nonresonant interaction between the oscillator and an atom. In a
system with sufficient quantum coherence, this interaction allows one to
distinguish different phonon number states by resolvable differences in the
atom's transition frequency. Such dispersive measurements have been studied in
cavity and circuit quantum electrodynamics where experiments using real and
artificial atoms have resolved the photon number states of cavities. Here, we
report an experiment where an artificial atom senses the motional energy of a
driven nanomechanical oscillator with sufficient sensitivity to resolve the
quantization of its energy. To realize this, we build a hybrid platform that
integrates nanomechanical piezoelectric resonators with a microwave
superconducting qubit on the same chip. We excite phonons with resonant pulses
of varying amplitude and probe the resulting excitation spectrum of the qubit
to observe phonon-number-dependent frequency shifts times larger
than the qubit linewidth. Our result demonstrates a fully integrated platform
for quantum acoustics that combines large couplings, considerable coherence
times, and excellent control over the mechanical mode structure. With modest
experimental improvements, we expect our approach will make quantum
nondemolition measurements of phonons an experimental reality, leading the way
to new quantum sensors and information processing approaches that use
chip-scale nanomechanical devices.Comment: 16 pages, 10 figure
Kovacs effects in an aging molecular liquid
We study by means of molecular dynamics simulations the aging behavior of a
molecular model of ortho-terphenyl. We find evidence of a a non-monotonic
evolution of the volume during an isothermal-isobaric equilibration process, a
phenomenon known in polymeric systems as Kovacs effect. We characterize this
phenomenology in terms of landscape properties, providing evidence that, far
from equilibrium, the system explores region of the potential energy landscape
distinct from the one explored in thermal equilibrium. We discuss the relevance
of our findings for the present understanding of the thermodynamics of the
glass state.Comment: RevTeX 4, 4 pages, 5 eps figure
Religion and religious education : comparing and contrasting pupils’ and teachers’ views in an English school
This publication builds on and develops the English findings of the qualitative study of European teenagers’ perspectives on religion and religious education (Knauth et al. 2008), part of ‘Religion in Education: A contribution to dialogue or a factor of conflict in transforming societies of European countries?’ (REDCo) project. It uses data gathered from 27 pupils, aged 15-16, from a school in a multicultural Northern town in England and compares those findings with data gathered from ten teachers in the humanities faculty of the same school, collected during research for the Warwick REDCo Community of Practice. Comparisons are drawn between the teachers’ and their pupils’ attitudes and values using the same structure as the European study: personal views and experiences of religion, the social dimension of religion, and religious education in school. The discussion offers an analysis of the similarities and differences in worldviews and beliefs which emerged. These include religious commitment/observance differences between the mainly Muslim-heritage pupils and their mainly non-practising Christian-heritage teachers. The research should inform the ways in which the statutory duties to promote community cohesion and equalities can be implemented in schools. It should also facilitate intercultural and interreligious understanding between teachers and the pupils from different ethnic and religious backgrounds
Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air
The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system
Diagramming social practice theory:An interdisciplinary experiment exploring practices as networks
Achieving a transition to a low-carbon energy system is now widely recognised as a key challenge facing humanity. To date, the vast majority of research addressing this challenge has been conducted within the disciplines of science, engineering and economics utilising quantitative and modelling techniques. However, there is growing awareness that meeting energy challenges requires fundamentally socio-technical solutions and that the social sciences have an important role to play. This is an interdisciplinary challenge but, to date, there remain very few explorations of, or reflections on, interdisciplinary energy research in practice. This paper seeks to change that by reporting on an interdisciplinary experiment to build new models of energy demand on the basis of cutting-edge social science understandings. The process encouraged the social scientists to communicate their ideas more simply, whilst allowing engineers to think critically about the embedded assumptions in their models in relation to society and social change. To do this, the paper uses a particular set of theoretical approaches to energy use behaviour known collectively as social practice theory (SPT) - and explores the potential of more quantitative forms of network analysis to provide a formal framework by means of which to diagram and visualize practices. The aim of this is to gain insight into the relationships between the elements of a practice, so increasing the ultimate understanding of how practices operate. Graphs of practice networks are populated based on new empirical data drawn from a survey of different types (or variants) of laundry practice. The resulting practice networks are analysed to reveal characteristics of elements and variants of practice, such as which elements could be considered core to the practice, or how elements between variants overlap, or can be shared. This promises insights into energy intensity, flexibility and the rootedness of practices (i.e. how entrenched/ established they are) and so opens up new questions and possibilities for intervention. The novelty of this approach is that it allows practice data to be represented graphically using a quantitative format without being overly reductive. Its usefulness is that it is readily applied to large datasets, provides the capacity to interpret social practices in new ways, and serves to open up potential links with energy modeling. More broadly, a significant dimension of novelty has been the interdisciplinary approach, radically different to that normally seen in energy research. This paper is relevant to a broad audience of social scientists and engineers interested in integrating social practices with energy engineering
Facial emotion processing in schizophrenia : a non-specific neuropsychological deficit?
Original article can be found at : http://journals.cambridge.org/ Copyright Cambridge University PressBackground: Identification of facial emotions has been found to be impaired in schizophrenia but there are uncertainties about the neuropsychological specificity of the finding. Method: Twenty-two patients with schizophrenia and 20 healthy controls were given tests requiring identification of facial emotion, judgement of the intensity of emotional expressions without identification, familiar face recognition and the Benton Facial Recognition Test (BFRT). The schizophrenia patients were selected to be relatively intellectually preserved. Results: The patients with schizophrenia showed no deficit in identifying facial emotion, although they were slower than the controls. They were, however, impaired on judging the intensity of emotional expression without identification. They showed impairment in recognizing familiar faces but not on the BFRT. Conclusions: When steps are taken to reduce the effects of general intellectual impairment, there is no deficit in identifying facial emotions in schizophrenia. There may, however, be a deficit in judging emotional intensity. The impairment found in naming familiar faces is consistent with other evidence of semantic memory impairment in the disorder.Peer reviewe
- …
