665 research outputs found
Large eddy simulation of a coal flame: estimation of the flicker frequency under air and oxy-fuel conditions
Fossil fuel combustion, such as coal combustion, currently meets the majority of the global energy demand; however, the process also produces a significant proportion of the worldwide CO2 greenhouse gas emissions. Further improvement in the efficiency and control of the combustion process is needed, as well as the implementation of novel technologies such as carbon capture and storage (CCS). Oxy-fuel combustion is a very promising CCS technology, where the air in the combustion process is replaced with a mixture of recycled flue gas and oxygen producing a high CO2 outflow that can effectively be processed or stored. The adjustment of the combustion environment within the boiler resulting from the high CO2 concentration will modify the flame characteristics. It is therefore important to evaluate properly the changes of the flame that occur with different flue gas recycle schemes.
A coal flame is often characterised by its physical parameters, such as the flame size, shape, brightness and temperature, and it can be considered as a stable flame by the presence of ignition and the propagation of the flame. The oscillatory behaviour of a flame can be quantified by the flicker frequency obtained after the instantaneous variations of the flame parameters, and is used as a reference for flame stability.
Computational Fluid Dynamics (CFD) is widely used to model coal combustion. This work compares the estimated flicker frequency taken from CFD calculations against measurements undertaken at the experimental facilities of the UKCCSRC Pilot-scale Advanced Capture Technology (PACT) located in South Yorkshire, UK. The 250 kW combustion test facility consists of a down-fired, refractory lined cylindrical furnace, which is 4 m in height with a 0.9 m internal diameter. The furnace is fitted with a scaled version of a commercially available Doosan Babcock low-NOx burner.
The flame physical parameters are approximated from performing a Large Eddy Simulation (LES) using the CFD code ANSYS FLUENT v15. The flicker frequency obtained from the CFD approach is compared against the experimentally measured value from a 2D flame imaging system. A series of oxy-fuel cases are then examined in the same fashion in order to assess their flame stability and the boiler operational limit. The flicker frequency trend obtained from the computations and measurements helps to determine the dynamic response of the flame for different combustion environments, and the results will be applicable in determining the optimal recycle ratio applied in future oxy-fuel systems
Extragalactic Results from the Infrared Space Observatory
More than a decade ago the IRAS satellite opened the realm of external
galaxies for studies in the 10 to 100 micron band and discovered emission from
tens of thousands of normal and active galaxies. With the 1995-1998 mission of
the Infrared Space Observatory the next major steps in extragalactic infrared
astronomy became possible: detailed imaging, spectroscopy and
spectro-photometry of many galaxies detected by IRAS, as well as deep surveys
in the mid- and far- IR. The spectroscopic data reveal a wealth of detail about
the nature of the energy source(s) and about the physical conditions in
galaxies. ISO's surveys for the first time explore the infrared emission of
distant, high-redshift galaxies. ISO's main theme in extragalactic astronomy is
the role of star formation in the activity and evolution of galaxies.Comment: 106 pages, including 17 figures. Ann.Rev.Astron.Astrophys. (in
press), a gzip'd pdf file (667kB) is also available at
http://www.mpe.mpg.de/www_ir/preprint/annrev2000.pdf.g
Evaluation in Mice of a Conjugate Vaccine for Cholera Made from Vibrio cholerae O1 (Ogawa) O-Specific Polysaccharide
Background: Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Methodology Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. Principal Findings We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. Conclusion: We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens
Continuous Glucose Monitoring in Medical Education: Bridging pre-clinical sciences with the patient experience
Introduction: Continuous-glucose monitoring (CGM) is a technology used by patients with diabetes to monitor and respond to blood-glucose levels (BGL). Despite proven benefit to patients, providers may not be comfortable prescribing or interpreting data from these devices. Teaching students about CGMs has the potential to increase not only their familiarity with this technology, but also complement their understanding of metabolism and nutrition concepts. This study examined the use of CGM as an educational tool in parallel with a traditional pre-clinical medical curriculum.
Methods: For this pilot study, 40 first-year medical-students were provided with Dexcom G7 or Freestyle Libre 3 CGMs to wear for 10 or 14 days, respectively. The devices were supplied by the device manufacturers as an unrestricted educational grant. Students attended a mandatory introduction to CGM led by faculty and were assisted with CGM application. On day 6, students were invited to participate in a focus group discussion with teaching faculty. Participation was voluntary.
Results: The five major insights from the student focus group were: 1) health and metabolism concepts such as glucose responses to fasting, stress, and exercise , 2) improved health behaviors such as making healthier or novel food choices, 3) technical issues such as device failures and skin reactions to the adhesives, 4) understanding of the patient experience such as stigma related to wearing a visible device, empathy regarding dependence on a device, and alarm burden, and 5) negative impacts such as anxiety about glucose variability and hyperglycemic readings, phone usage, and preoccupation with the abundance of data.
The overall student experience was very positive and deemed a feasible addition to the curriculum.
Conclusions: Overall, short-term use of a CGM provided medical students valuable insights into metabolism, nutrition, personal health and patient experiences, while recognizing the emotional and technical burden that can be experienced by a person with diabetes. For future cohorts we seek to improve the program and expand the offering to all eligible and interested students
Metabolomics-guided isolation of anti-trypanosomal compounds from endophytic fungi of the mangrove plant Avicennia lanata
Endophytic fungi have been explored not just for their ecological functions but also for their secondary metabolites as a new source of these pharmacologically active natural products. Accordingly, many structurally unique and biologically active compounds have been obtained from the cultures of endophytic fungi. Fusarium sp. and Lasiodiplodia theobromae were isolated from the root and stem of the mangrove plant Avicennia lanata, respectively, collected from Terengganu, Malaysia. High-resolution mass spectrometry and NMR spectroscopy were used as metabolomics profiling tools to identify and optimize the production of bioactive secondary metabolites in both strains at different growth stages and culture media. The spectral data was processed by utilizing the MZmine 2.2, a quantitative expression analysis software and an in house MS-Excel macro coupled with the Dictionary of Natural Products databases for dereplication studies. The investigation for the potential bioactive metabolites from a 15-day rice culture of Fusarium sp. yielded four 1,4-naphthoquinone with naphthazarin structures (1-4). On the other hand, the endophytic fungus L. theobromae grown on the 15-day solid rice culture produced dihydroisocoumarins (5 to 8). All the isolated compounds (1 to 8) showed significant activity against Trypanosoma brucei brucei with MIC values of 0.32-12.5 μM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing the lowest cytotoxicity of only 22.3% and 38.6% of the control values at 100 μg/mL, respectively. Structure elucidation of the isolated secondary metabolites was achieved using 1D and 2D-NMR and HRESI-MS as well as comparison with literature data
Planck 2015 results: XV. gravitational lensing
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ 8 Ω 0.25 m =0.591±0.021 . We combine our determination of the lensing potential with the E-mode polarization also measured by Planck to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model
Current and prospective pharmacological targets in relation to antimigraine action
Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)
The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and
surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL.
samples collected in the Leghorn marine environment in September and October 1999.
Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the
same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL
values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than
in the dissolved phase.
SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177
mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour.
To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop
adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can
interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved
Clostridium difficile infection.
Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota
- …
