2,805 research outputs found
Large, long range tensile forces drive convergence during
Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 mN during gastrulation and over 4 mN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 mN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms. © Shook et al
Annual prediction of shoreline erosion and subsequent recovery
publisher: Elsevier articletitle: Annual prediction of shoreline erosion and subsequent recovery journaltitle: Coastal Engineering articlelink: http://dx.doi.org/10.1016/j.coastaleng.2017.09.008 content_type: article copyright: Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved
Inhibition of p73 Function by Pifithrin-α as Revealed by Studies in Zebrafish Embryos
The p53 family of proteins contains two members that have been implicated in sensitization of cells and organisms to genotoxic stress, i.e., p53 itself and p73. In vitro, lack of either p53 or p73 can protect certain cell types in the adult organism against death upon exposure to DNA damaging agents. The present study was designed to assess the relative contribution of p53 to radiation resistance of an emerging vertebrate model organism, i.e., zebrafish embryos. Consistent with previous reports, suppressing p53 protein expression using antisense morpholino oligonucleotides (MOs) increased survival and reduced gross morphological alterations in zebrafish embryos exposed to ionizing radiation. By contrast, a pharmacological inhibitor of p53 function [Pifithrin-α (PFTα)] caused developmental abnormalities affecting the head, brain, eyes and kidney function and did not protect against lethal effects of ionizing radiation when administered at 3 hours post fertilization (hpf). The phenotypic abnormalities associated with PFTα treatment were similar to those caused by antisense MO knock down (kd) used to reduce p73 expression. PFTα also inhibited p73-dependent transcription of a reporter gene construct containing canonical p53-responsive promoter sequences. Notably, when administered at later stages of development (23 hpf), PFTα did not cause overt developmental defects but exerted radioprotective effects in zebrafish embryos. In summary, this study highlights off-target effects of the pharmacological p53 inhibitor PFTα related to inhibition of p73 function and essential roles of p73 at early but not later stages of zebrafish development.
Abreviations:
MO, antisense morpholino oligonucleotide; PFTα, pifithrin-α; Hpf, hours post fertilization; Kd, knock down; IR, ionizing radiation
Cell Cycle, Volume 7, Issue 9, pp. 1224-1230
Perturbations of nuclear C*-algebras
Kadison and Kastler introduced a natural metric on the collection of all
C*-subalgebras of the bounded operators on a separable Hilbert space. They
conjectured that sufficiently close algebras are unitarily conjugate. We
establish this conjecture when one algebra is separable and nuclear. We also
consider one-sided versions of these notions, and we obtain embeddings from
certain near inclusions involving separable nuclear C*-algebras. At the end of
the paper we demonstrate how our methods lead to improved characterisations of
some of the types of algebras that are of current interest in the
classification programme.Comment: 45 page
For which side the bell tolls: The laterality of approach-avoidance associative networks
The two hemispheres of the brain appear to play different roles in emotion and/or motivation. A great deal of previous research has examined the valence hypothesis (left hemisphere = positive; right = negative), but an increasing body of work has supported the motivational hypothesis (left hemisphere = approach; right = avoidance) as an alternative. The present investigation (N = 117) sought to provide novel support for the latter perspective. Left versus right hemispheres were briefly activated by neutral lateralized auditory primes. Subsequently, participants categorized approach versus avoidance words as quickly and accurately as possible. Performance in the task revealed that approach-related thoughts were more accessible following left-hemispheric activation, whereas avoidance-related thoughts were more accessible following right-hemispheric activation. The present results are the first to examine such lateralized differences in accessible motivational thoughts, which may underlie more “downstream” manifestations of approach and avoidance motivation such as judgments, decision making, and behavior
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing
Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities
Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance
Quantum ground-state problems are computationally hard problems; for general
many-body Hamiltonians, there is no classical or quantum algorithm known to be
able to solve them efficiently. Nevertheless, if a trial wavefunction
approximating the ground state is available, as often happens for many problems
in physics and chemistry, a quantum computer could employ this trial
wavefunction to project the ground state by means of the phase estimation
algorithm (PEA). We performed an experimental realization of this idea by
implementing a variational-wavefunction approach to solve the ground-state
problem of the Heisenberg spin model with an NMR quantum simulator. Our
iterative phase estimation procedure yields a high accuracy for the
eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was
distilled to be more than 80%, and the singlet-to-triplet switching near the
critical field is reliably captured. This result shows that quantum simulators
can better leverage classical trial wavefunctions than classical computers.Comment: 11 pages, 13 figure
Recommended from our members
The influence of soil communities on the temperature sensitivity of soil respiration
Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity, to predict RS rates across five biomes. We find that accounting for the ecological mechanisms underpinning decomposition processes predicts climatological RS variations observed in an independent dataset (n = 312). The importance of community composition is evident because without it RS is substantially underestimated. With increasing temperature, we predict a latitudinal increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ±0.01 in tropical forests to 2.72 ±0.03 in tundra. This global trend has been widely observed, but has not previously been linked to soil communities
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
- …
