103 research outputs found

    Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender

    Get PDF
    Summary. Objective. ADHD is frequently accompanied by motor coordination problems. However, the co-occurrence of poor motor performance has received less attention in research than other coexisting problems in ADHD. The underlying mechanisms of this association remain unclear. Therefore, we investigated the prevalence of motor coordination problems in a large sample of children with ADHD, and the relationship between motor coordination problems and inattentive and hyperactive/impulsive symptoms. Furthermore, we assessed whether the association between ADHD and motor coordination problems was comparable across ages and was similar for both genders. Method. We investigated 486 children with ADHD and 269 normal controls. Motor coordination problems were rated by parents (Developmental Coordination Disorder Questionnaire) and teachers (Groningen Motor Observation Scale). Results. Parents and teachers reported motor coordination problems in about one third of children with ADHD. Problems of fine and gross motor skills, coordination skills and motor control were all related to inattentive rather than hyperactive/impulsive symptoms. Relative to controls, motor coordination problems in ADHD were still present in teenagers according to parents; the prevalence diminished somewhat according to teachers. Boys and girls with ADHD were comparably affected, but motor performance in controls was better in girls than in boys. Conclusions. Motor coordination problems were reported in one third of children with ADHD and affected both boys and girls. These problems were also apparent in adolescents with ADHD. Clinicians treating children with ADHD should pay attention to co-occurring motor coordination problems because of the high prevalence and the negative impact of motor coordination problems on daily life

    Specialized interfaces of Smc5/6 control hinge stability and DNA association

    Get PDF
    The Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin and Smc5/6 are involved in the organization of higher-order chromosome structure—which is essential for accurate chromosome duplication and segregation. Each complex is scaffolded by a specific SMC protein dimer (heterodimer in eukaryotes) held together via their hinge domains. Here we show that the Smc5/6-hinge, like those of cohesin and condensin, also forms a toroidal structure but with distinctive subunit interfaces absent from the other SMC complexes; an unusual ‘molecular latch’ and a functional ‘hub’. Defined mutations in these interfaces cause severe phenotypic effects with sensitivity to DNA-damaging agents in fission yeast and reduced viability in human cells. We show that the Smc5/6-hinge complex binds preferentially to ssDNA and that this interaction is affected by both ‘latch’ and ‘hub’ mutations, suggesting a key role for these unique features in controlling DNA association by the Smc5/6 complex

    Teaching appropriate interactions with pharmaceutical company representatives: The impact of an innovative workshop on student attitudes

    Get PDF
    BACKGROUND: Pharmaceutical company representatives (PCRs) influence the prescribing habits and professional behaviour of physicians. However, the skills for interacting with PCRs are not taught in the traditional medical school curriculum. We examined whether an innovative, mandatory workshop for third year medical students had immediate effects on knowledge and attitudes regarding interactions with PCRs. METHODS: Surveys issued before and after the workshop intervention solicited opinions (five point Likert scales) from third year students (n = 75) about the degree of bias in PCR information, the influence of PCRs on prescribing habits, the acceptability of specific gifts, and the educational value of PCR information for both practicing physicians and students. Two faculty members and one PCR led the workshop, which highlighted typical physician-PCR interactions, the use of samples and gifts, the validity and legal boundaries of PCR information, and associated ethical issues. Role plays with the PCR demonstrated appropriate and inappropriate strategies for interacting with PCRs. RESULTS: The majority of third year students (56%, 42/75) had experienced more than three personal conversations with a PCR about a drug product since starting medical school. Five percent (4/75) claimed no previous personal experience with PCRs. Most students (57.3%, 43/75) were not aware of available guidelines regarding PCR interactions. Twenty-eight percent of students (21/75) thought that none of the named activities/gifts (lunch access, free stethoscope, textbooks, educational CD-ROMS, sporting events) should be restricted, while 24.0% (8/75) thought that students should be restricted only from sporting events. The perceived educational value of PCR information to both practicing physicians and students increased after the workshop intervention from 17.7% to 43.2% (chi square, p = .0001), and 22.1% to 40.5% (p = .0007), respectively. Student perceptions of the degree of bias of PCR information decreased from 84.1% to 72.9% (p = .065), but the perceived degree of influence on prescribing increased (44.2% to 62.1% (p = .02)). CONCLUSIONS: Students have exposure to PCRs early in their medical training. A single workshop intervention may influence student attitudes toward interactions with PCRs. Students were more likely to acknowledge the educational value of PCR interactions and their impact on prescribing after the workshop intervention

    Inhibition, Reinforcement Sensitivity and Temporal Information Processing in ADHD and ADHD+ODD: Evidence of a Separate Entity?

    Get PDF
    This study compared children with ADHD-only, ADHD+ODD and normal controls (age 8–12) on three key neurocognitive functions: response inhibition, reinforcement sensitivity, and temporal information processing. The goal was twofold: (a) to investigate neurocognitive impairments in children with ADHD-only and children with ADHD+ODD, and (b) to test whether ADHD+ODD is a more severe from of ADHD in terms of neurocognitive performance. In Experiment 1, inhibition abilities were measured using the Stop Task. In Experiment 2, reinforcement sensitivity and temporal information processing abilities were measured using a Timing Task with both a reward and penalty condition. Compared to controls, children with ADHD-only demonstrated impaired inhibitory control, showed more time underestimations, and showed performance deterioration in the face of reward and penalty. Children with ADHD+ODD performed in-between children with ADHD-only and controls in terms of inhibitory controls and the tendency to underestimate time, but were more impaired than controls and children with ADHD-only in terms of timing variability. In the face of reward and penalty children with ADHD+ODD improved their performance compared to a neutral condition, in contrast to children with ADHD-only. In the face of reward, the performance improvement in the ADHD+ODD group was disproportionally larger than that of controls. Taken together the findings suggest that, in terms of neurocognitive functioning, comorbid ADHD+ODD is a substantial different entity than ADHD-only

    Can Motivation Normalize Working Memory and Task Persistence in Children with Attention-Deficit/Hyperactivity Disorder? The Effects of Money and Computer-Gaming

    Get PDF
    Visual-spatial Working Memory (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with- and without ADHD. Studies examining this in executive functions other than WM, show inconsistent results. These inconsistencies may be related to differences in the reinforcement used. The effects of different reinforcers on WM performance were investigated in 30 children with ADHD and 31 non-ADHD controls. A visual-spatial WM task was administered in four reinforcement conditions: Feedback-only, 1 euro, 10 euros, and a computer-game version of the task. In the Feedback-only condition, children with ADHD performed worse on the WM measure than controls. Although incentives significantly improved the WM performance of children with ADHD, even the strongest incentives (10 euros and Gaming) were unable to normalize their performance. Feedback-only provided sufficient reinforcement for controls to reach optimal performance, while children with ADHD required extra reinforcement. Only children with ADHD showed a decrease in performance over time. Importantly, the strongest incentives (10 euros and Gaming) normalized persistence of performance in these children, whereas 1 euro had no such effect. Both executive and motivational deficits give rise to visual-spatial WM deficits in ADHD. Problems with task-persistence in ADHD result from motivational deficits. In ADHD-reinforcement studies and clinical practice (e.g., assessment), reinforcement intensity can be a confounding factor and should be taken into account. Gaming can be a cost-effective way to maximize performance in ADHD

    Testing assumptions for endophenotype studies in ADHD: Reliability and validity of tasks in a general population sample

    Get PDF
    BACKGROUND: Advances in both genetic and cognitive-experimental studies on attention deficit hyperactivity disorder (ADHD) have opened new opportunities for cognitive endophenotype research. In such genetic designs the focus is on individual differences in characteristics, associated with ADHD, that can be measured reliably over time. Genetic studies that take a 'quantitative trait loci' approach hypothesise that multiple susceptibility genes contribute to a continuous dimension of ADHD symptoms. As an important initial step, we aimed to investigate the underlying assumptions that (1) key cognitive-experimental tasks indicate adequate test-retest reliability and (2) ADHD symptom scores in a general population sample are associated with performance on these tasks. METHODS: Forty-nine children were assessed on a go/no-go task and a reaction time task (the 'fast task') that included manipulations with event rate and incentives. The children were assessed twice, with a test-retest interval of two weeks. RESULTS: The majority of the task variables demonstrated moderate-to-good test-retest reliability. The correlations between teacher ratings of ADHD symptoms and key task variables were .4–.6: ADHD symptoms were associated with poor performance (especially high reaction time variability) in a slow baseline condition, whereas there was low or no association in conditions with a faster event rate or incentives. In contrast, no clear pattern of findings emerged based on parent ratings of ADHD symptoms. CONCLUSION: The data support the usefulness of the go/no-go and fast tasks for genetic studies, which require reliable and valid indices of individual differences. The overall pattern of associations between teacher ratings of ADHD symptoms and task variables is consistent with effects of event rate and incentives on performance, as predicted by the model of activation and arousal regulation. The lack of a clear pattern of findings with parent ratings of ADHD symptoms warrants further study

    Distinct glutaminyl cyclase expression in Edinger–Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease

    Get PDF
    Glutaminyl cyclase (QC) was discovered recently as the enzyme catalyzing the pyroglutamate (pGlu or pE) modification of N-terminally truncated Alzheimer’s disease (AD) Aβ peptides in vivo. This modification confers resistance to proteolysis, rapid aggregation and neurotoxicity and can be prevented by QC inhibitors in vitro and in vivo, as shown in transgenic animal models. However, in mouse brain QC is only expressed by a relatively low proportion of neurons in most neocortical and hippocampal subregions. Here, we demonstrate that QC is highly abundant in subcortical brain nuclei severely affected in AD. In particular, QC is expressed by virtually all urocortin-1-positive, but not by cholinergic neurons of the Edinger–Westphal nucleus, by noradrenergic locus coeruleus and by cholinergic nucleus basalis magnocellularis neurons in mouse brain. In human brain, QC is expressed by both, urocortin-1 and cholinergic Edinger–Westphal neurons and by locus coeruleus and nucleus basalis Meynert neurons. In brains from AD patients, these neuronal populations displayed intraneuronal pE-Aβ immunoreactivity and morphological signs of degeneration as well as extracellular pE-Aβ deposits. Adjacent AD brain structures lacking QC expression and brains from control subjects were devoid of such aggregates. This is the first demonstration of QC expression and pE-Aβ formation in subcortical brain regions affected in AD. Our results may explain the high vulnerability of defined subcortical neuronal populations and their central target areas in AD as a consequence of QC expression and pE-Aβ formation

    Catechol-O-Methyltransferase (COMT) Val(108/158 )Met polymorphism does not modulate executive function in children with ADHD

    Get PDF
    BACKGROUND: An association has been observed between the catechol-O-methyltransferase (COMT) gene, the predominant means of catecholamine catabolism within the prefrontal cortex (PFC), and neuropsychological task performance in healthy and schizophrenic adults. Since several of the cognitive functions typically deficient in children with Attention Deficit Hyperactivity Disorder (ADHD) are mediated by prefrontal dopamine (DA) mechanisms, we investigated the relationship between a functional polymorphism of the COMT gene and neuropsychological task performance in these children. METHODS: The Val(108/158 )Met polymorphism of the COMT gene was genotyped in 118 children with ADHD (DSM-IV). The Wisconsin Card Sorting Test (WCST), Tower of London (TOL), and Self-Ordered Pointing Task (SOPT) were employed to evaluate executive functions. Neuropsychological task performance was compared across genotype groups using analysis of variance. RESULTS: ADHD children with the Val/Val, Val/Met and Met/Met genotypes were similar with regard to demographic and clinical characteristics. No genotype effects were observed for WCST standardized perseverative error scores [F(2,97 )= 0.67; p > 0.05], TOL standardized scores [F(2,99 )= 0.97; p > 0.05], and SOPT error scores [F(2,108 )= 0.62; p > 0.05]. CONCLUSIONS: Contrary to the observed association between WCST performance and the Val(108/158 )Met polymorphism of the COMT gene in both healthy and schizophrenic adults, this polymorphism does not appear to modulate executive functions in children with ADHD

    Alternative splicing of exon 10 in the tau gene as a target for treatment of tauopathies

    Get PDF
    Tau aggregation is one of the major features in Alzheimer's disease and in several other tauopathies, including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), and progressive supranuclear palsy (PSP). More than 35 mutations in the tau gene have been identified from FTDP-17 patients. A group of these mutations alters splicing of exon 10, resulting in an increase in exon 10 inclusion into tau mRNA. Abnormal splicing with inclusion of exon 10 into tau mRNA has also been observed in PSP and AD patients. These results indicate that abnormal splicing of exon 10, leading to the production of tau with exon 10, is probably one of the mechanisms by which tau accumulates and aggregates in tauopathic brains. Therefore, modulation of exon 10 splicing in the tau gene could potentially be targeted to prevent tauopathies. To identify small molecules or compounds that could potentially be developed into drugs to treat tauopathies, we established a cell-based high-throughput screening assay. In this review, we will discuss how realistic, specific biological molecules can be found to regulate exon 10 splicing in the tau gene for potential treatment of tauopathies

    Executive Function in Very Preterm Children at Early School Age

    Get PDF
    We examined whether very preterm (≤30 weeks gestation) children at early school age have impairments in executive function (EF) independent of IQ and processing speed, and whether demographic and neonatal risk factors were associated with EF impairments. A consecutive sample of 50 children (27 boys and 23 girls) born very preterm (mean age = 5.9 years, SD = 0.4, mean gestational age = 28.0 weeks, SD = 1.4) was compared to a sample of 50 age-matched full-term controls (23 girls and 27 boys, mean age = 6.0 years, SD = 0.6) with respect to performance on a comprehensive EF battery, assessing the domains of inhibition, working memory, switching, verbal fluency, and concept generation. The very preterm group demonstrated poor performance compared to the controls on all EF domains, even after partialing out the effects of IQ. Processing speed was marginally related to EF. Analyses with demographic and neonatal risk factors showed maternal education and gestational age to be related to EF. This study adds to the emerging body of literature showing that very preterm birth is associated with EF impairments
    corecore