22 research outputs found
Validation of finite-element models of persistent-current effects in Nb3Sn accelerator magnets
Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, particularly at low field, where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb Sn accelerator magnets. Here, a finite-element method based on the measured strand magnetization is validated using three state-of-the-art Nb Sn accelerator magnets featuring different subelement diameters, conductor critical currents, magnet designs, and test temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent-current effects is discussed. The strengths, limitations, and possible improvements of the approach are also discussed. 3
Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)
Serological profile of foot-and-mouth disease in wildlife populations of West and Central Africa with special reference to Syncerus caffer subspecies
The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems
Critical Currents and Superconducting Boundary Effects in S-N-S Multifilamentary Composites
Modeling of transport AC losses in superconducting arrays carrying anti-parallel currents
Recommended from our members
Influence of Compaction during reaction Heat Treatment on the Interstrand Contact Resistances of Nb 3Sn Rutherford Cables for Accelerator Magnets
The high field superconducting magnets required for ongoing and planned upgrades to the Large Hadron Collider (LHC) will be wound with Nb3Sn Rutherford cables for which reason studies of Nb3Sn strand, cable, and magnet properties will continue to be needed. Of particular importance is field quality. The amplitudes of multipoles in the bore fields of dipole and quadrupole magnets, induced by ramp-rate-dependent coupling currents, are under the control of the interstrand contact resistances-crossing-strand, , adjacent strand, , or a combination of them, . Although two decades ago it was agreed that for the LHC should be in the range 10-30 μ, more recent measurements of LHC quadrupoles have revealed values ranging from 95 to 230 μ. This paper discusses ways in which these values can be achieved. In a heavily compacted cable can be tuned to some predictable value by varying the width of an included stainless steel (effectively 'insulating') core. But cables are no longer heavily compacted with the result that the crossing strands of the impregnated cable are separated by a thick epoxy layer that behaves like an insulating core. If a stainless steel core is actually present, must be independent of core width. Since there is no guarantee that a fixed predetermined amount of interlayer separation could be reproduced from winding to winding it would be advisable to include a full width core
Interstrand Coupling Properties of LARP High Gradient Quadrupole Cables in Response to Variations in Cable Design and Heat Treatment Condition
Calorimetric measurement of coupling loss versus frequency has been measured on two sets of cored and uncored large Hadron Collider Accelerator Research Program high gradient quadrupole Nb Sn Rutherford cables. Studied are the responses of the resulting interstrand contact resistances (ICR) to variation of stainless-steel (SS) core width and position and to variation of reaction-heat-treatment (RHT) condition. One pair of cables (an early HQ-series type) with and without core had received RHT under 20-MPa uniaxial face-on pressure. Another set of cables (recent QXF type) furnished with SS cores of various widths had received RHT under ambient pressure. The results were displayed as cable-cross-sectional micrographs and plots of ICR versus percent core coverage (W). The HQ cables were tightly compacted and produced results consistent with a previously expected continuous ICR versus W variation. On the other hand, the QXF cables were uncompacted such that their upper and lower layers were separated by what is referred to as a full-width 'pseudocore;' as a result, their ICRs were independent of the widths of the SS cores. Compaction versus noncompaction is discussed and future research directions are suggested.
Improvement of critical current density and thermally assisted individual vortex depinning in pulsed-laser-deposited YBa2Cu3O7-delta thin films on SrTiO3 (100) substrate with surface modification by Ag nanodots
YBa2Cu3O7 films were fabricated by pulsed laser deposition on SrTiO3 s100d single-crystal
substrates whose surfaces were modified by the introduction of Ag nanodots. The critical current
density sJcd was found to increase with the number of Ag shots. Zero-field magnetic Jc0 at 77 K
increased from 83105 up to 3.53106 A/cm2 as the number of Ag shots increased from 0 to over
150 times. Microstructure investigations indicated that the crystallinity and the ab alignment
gradually improved as the number of Ag nanodots increased. Thermally activated depinning of
individual vortices is suggested responsible for a field-independent Jc platea
