3,043 research outputs found
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
This article is meant as a summary and introduction to the ideas of effective
field theory as applied to gravitational systems.
Contents:
1. Introduction
2. Effective Field Theories
3. Low-Energy Quantum Gravity
4. Explicit Quantum Calculations
5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living
Reviews of Relativit
Geodesic motion in the space-time of a cosmic string
We study the geodesic equation in the space-time of an Abelian-Higgs string
and discuss the motion of massless and massive test particles. The geodesics
can be classified according to the particles energy, angular momentum and
linear momentum along the string axis. We observe that bound orbits of massive
particles are only possible if the Higgs boson mass is smaller than the gauge
boson mass, while massless particles always move on escape orbits. Moreover,
neither massive nor massless particles can ever reach the string axis for
non-vanishing angular momentum. We also discuss the dependence of light
deflection by a cosmic string as well as the perihelion shift of bound orbits
of massive particles on the ratio between Higgs and gauge boson mass and the
ratio between symmetry breaking scale and Planck mass, respectively.Comment: 20 pages including 14 figures; v2: references added, discussion on
null geodesics extended, numerical results adde
Gender-Related Differences in the Prevalence of Cardiovascular Disease Risk Factors and their Correlates in Urban Tanzania.
\ud
Urban areas in Africa suffer a serious problem with dual burden of infectious diseases and emerging chronic diseases such as cardiovascular diseases (CVD) and diabetes which pose a serious threat to population health and health care resources. However in East Africa, there is limited literature in this research area. The objective of this study was to examine the prevalence of cardiovascular disease risk factors and their correlates among adults in Temeke, Dar es Salaam, Tanzania. Results of this study will help inform future research and potential preventive and therapeutic interventions against such chronic diseases. The study design was a cross sectional epidemiological study. A total of 209 participants aged between 44 and 66 years were included in the study. A structured questionnaire was used to evaluate socioeconomic and lifestyle characteristics. Blood samples were collected and analyzed to measure lipid profile and fasting glucose levels. Cardiovascular risk factors were defined using World Health Organization criteria. The age-adjusted prevalence of obesity (BMI > or = 30) was 13% and 35%, among men and women (p = 0.0003), respectively. The prevalence of abdominal obesity was 11% and 58% (p < 0.0001), and high WHR (men: >0.9, women: >0.85) was 51% and 73% (p = 0.002) for men and women respectively. Women had 4.3 times greater odds of obesity (95% CI: 1.9-10.1), 14.2-fold increased odds for abdominal adiposity (95% CI: 5.8-34.6), and 2.8 times greater odds of high waist-hip-ratio (95% CI: 1.4-5.7), compared to men. Women had more than three-fold greater odds of having metabolic syndrome (p = 0.001) compared to male counterparts, including abdominal obesity, low HDL-cholesterol, and high fasting blood glucose components. In contrast, female participants had 50% lower odds of having hypertension, compared to men (95%CI: 0.3-1.0). Among men, BMI and waist circumference were significantly correlated with blood pressure, triglycerides, total, LDL-, and HDL-cholesterol (BMI only), and fasting glucose; in contrast, only blood pressure was positively associated with BMI and waist circumference in women. The prevalence of CVD risk factors was high in this population, particularly among women. Health promotion, primary prevention, and health screening strategies are needed to reduce the burden of cardiovascular disease in Tanzania.\u
Animating the Carbon Cycle
This a post-print, author-produced version of an article accepted for publication in Ecosystems. Copyright © 2013 Springer Science+Business Media New York. The final publication is available at Springer via http://dx.doi.org/10.1007/s10021-013-9715-7Understanding the biogeochemical processes regulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully “animating” the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quantification of their effects on carbon storage and exchange among terrestrial and aquatic reservoirs and the atmosphere. To encourage more hypothesis-driven experimental research that quantifies animal effects we discuss the mechanisms by which animals may affect carbon exchanges and storage within and among ecosystems and the atmosphere. We illustrate how those mechanisms lead to multiplier effects whose magnitudes may rival those of more traditional carbon storage and exchange rate estimates currently used in the carbon budget. Many animal species are already directly managed. Thus improved quantitative understanding of their influence on carbon budgets may create opportunity for management and policy to identify and implement new options for mitigating CO2 release at regional scales.US National Science FoundationNERCBBSRCNippon Foundatio
Searches for Gravitational Waves from Binary Neutron Stars: A Review
A new generation of observatories is looking for gravitational waves. These
waves, emitted by highly relativistic systems, will open a new window for ob-
servation of the cosmos when they are detected. Among the most promising
sources of gravitational waves for these observatories are compact binaries in
the final min- utes before coalescence. In this article, we review in brief
interferometric searches for gravitational waves emitted by neutron star
binaries, including the theory, instru- mentation and methods. No detections
have been made to date. However, the best direct observational limits on
coalescence rates have been set, and instrumentation and analysis methods
continue to be refined toward the ultimate goal of defining the new field of
gravitational wave astronomy.Comment: 30 pages, 5 Figures, to appear in "Short-Period Binary Stars:
Observations, Analyses, and Results", Ed.s Eugene F. Milone, Denis A. Leahy,
David W. Hobil
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems
Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts
Evaluating the use of the Child and Adolescent Intellectual Disability Screening Questionnaire (CAIDS-Q) to estimate IQ in children with low intellectual ability
In situations where completing a full intellectual assessment is not possible or desirable the clinician or researcher may require an alternative means of accurately estimating intellectual functioning. There has been limited research in the use of proxy IQ measures in children with an intellectual disability or low IQ. The present study aimed to provide a means of converting total scores from a screening tool (the Child and Adolescent Intellectual Disability Screening Questionnaire: CAIDS-Q) to an estimated IQ. A series of linear regression analyses were conducted on data from 428 children and young people referred to clinical services, where FSIQ was predicted from CAIDS-Q total scores. Analyses were conducted for three age groups between ages 6 and 18 years. The study presents a conversion table for converting CAIDS-Q total scores to estimates of FSIQ, with corresponding 95% prediction intervals to allow the clinician or researcher to estimate FSIQ scores from CAIDS-Q total scores. It is emphasised that, while this conversion may offer a quick means of estimating intellectual functioning in children with a below average IQ, it should be used with caution, especially in children aged between 6 and 8 years old
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
- …
