12 research outputs found

    LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse

    Get PDF
    Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy

    Perspectives on phenotypic screening-Screen Design and Assay Technology Special Interest Group

    No full text
    Here we offer perspectives on phenotypic screening based on a wide-ranging discussion entitled “Phenotypic screening, target ID, and multi-omics: enabling more disease relevance in early discovery?” at the Screen Design and Assay Technology Special Interest Group Meeting at the 2023 SLAS Conference. During the session, the authors shared their own experience from within their respective organizations, followed by an open discussion with the audience. It was recognized that while substantial progress has been made towards translating disease-relevant phenotypic early discovery into clinical success, there remain significant operational and scientific challenges to implementing phenotypic screening efforts, and improving translation of screening hits comes with substantial resource demands and organizational commitment. This Perspective assesses progress, highlights pitfalls, and offers possible solutions to help unlock the therapeutic potential of phenotypic drug discovery. Areas explored comprise screening and hit validation strategy, choice of cellular model, moving beyond 2D cell culture into three dimensions, and leveraging high-dimensional data sets downstream of phenotypic screens

    USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses

    No full text
    Deubiquitinases (DUBs) are a new class of drug targets, although the physiological function of only few DUBs has been characterized. Here we identified the DUB USP15 as a crucial negative regulator of T cell activation. USP15 stabilized the E3 ubiquitin ligase MDM2, which in turn negatively regulated T cell activation by targeting the degradation of the transcription factor NFATc2. USP15 deficiency promoted T cell activation in vitro and enhanced T cell responses to bacterial infection and tumor challenge in vivo. USP15 also stabilized MDM2 in cancer cells and regulated p53 function and cancer-cell survival. Our results suggest that inhibition of USP15 may both induce tumor cell apoptosis and boost antitumor T cell responses
    corecore