1,076 research outputs found

    The Effect of Degrading Binocular Single Vision on Fine Visuomotor Skill Task Performance

    Get PDF
    Purpose.: To evaluate the impact of degrading binocular single vision (BSV) on performance of fine visuomotor skill tasks requiring speed/accuracy. Methods.: Binocular functions (Frisby/Preschool Randot [PSR] stereoacuity, horizontal phasic prism fusion amplitudes) were measured in visually normal participants aged 18 to 40 years (n = 80). Participants performed 2-timed visuomotor tasks: water pouring (450 mL accurately into five measuring cylinders at 90 mL) and bead threading on upright needles (30 large, 22 small beads, creating two difficulty levels). Task and binocular function measures were repeated in a randomized order with monocular visual acuity (VA) reduced in three-line increments using convex spherical lenses. Analyses used were Kruskal-Wallis/Mann-Whitney U tests and linear mixed modeling. Results.: Median Frisby stereoacuity levels were 20″ arc at baseline, 55″ arc when VA was degraded by 6 lines, 210″ arc by 9 lines, and unmeasurable by 12 lines (9 lines in some individuals). Task performance times deteriorated for the large bead task (7%–10% between lenses, total 37% from median baseline time of 51 seconds, P < 0.001), and small bead task (0.5%–15% between lenses, total 42% from median baseline time of 57 seconds, P < 0.001). Binocular function measures causing significant fixed effects were base-out fusional amplitudes in both bead tasks (large: P = 0.010, small: P = 0.011) and PSR stereoacuity in the small bead task (P = 0.047). Water-pouring task performance was not significantly affected by changes in any experimental parameter. Conclusions.: Degrading motor fusion as well as stereoacuity significantly affects performance in certain fine visuomotor tasks. This impact is differentially affected by task difficulty

    Multiple uncontrolled conditions and blood pressure medication intensification: an observational study

    Get PDF
    Abstract Background Multiple uncontrolled medical conditions may act as competing demands for clinical decision making. We hypothesized that multiple uncontrolled cardiovascular risk factors would decrease blood pressure (BP) medication intensification among uncontrolled hypertensive patients. Methods We observed 946 encounters at two VA primary care clinics from May through August 2006. After each encounter, clinicians recorded BP medication intensification (BP medication was added or titrated). Demographic, clinical, and laboratory information were collected from the medical record. We examined BP medication intensification by presence and control of diabetes and/or hyperlipidemia. 'Uncontrolled' was defined as hemoglobin A1c &#8805; for diabetes, BP &#8805; 140/90 mmHg (&#8805; 130/80 mmHg if diabetes present) for hypertension, and low density lipoprotein cholesterol (LDL-c) &#8805; 130 mg/dl (&#8805; 100 mg/dl if diabetes present) for hyperlipidemia. Hierarchical regression models accounted for patient clustering and adjusted medication intensification for age, systolic BP, and number of medications. Results Among 387 patients with uncontrolled hypertension, 51.4% had diabetes (25.3% were uncontrolled) and 73.4% had hyperlipidemia (22.7% were uncontrolled). The BP medication intensification rate was 34.9% overall, but higher in individuals with uncontrolled diabetes and uncontrolled hyperlipidemia: 52.8% overall and 70.6% if systolic BP &#8805; 10 mmHg above goal. Intensification rates were lowest if diabetes or hyperlipidemia were controlled, lower than if diabetes or hyperlipidemia were not present. Multivariable adjustment yielded similar results. Conclusions The presence of uncontrolled diabetes and hyperlipidemia was associated with more guideline-concordant hypertension care, particularly if BP was far from goal. Efforts to understand and improve BP medication intensification in patients with controlled diabetes and/or hyperlipidemia are warranted.http://deepblue.lib.umich.edu/bitstream/2027.42/78266/1/1748-5908-5-55.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78266/2/1748-5908-5-55.pdfPeer Reviewe

    What have transgenic and knockout animals taught us about respiratory disease?

    Get PDF
    Over the past decade there has been a significant shift to the use of murine models for investigations into the molecular basis of respiratory diseases, including asthma and chronic obstructive pulmonary disease. These models offer the exciting prospect of dissecting the complex interaction between cytokines, chemokines and growth related peptides in disease pathogenesis. Furthermore, the receptors and the intracellular signalling pathways that are subsequently activated are amenable for study because of the availability of monoclonal antibodies and techniques for targeted gene disruption and gene incorporation for individual mediators, receptors and proteins. However, it is clear that extrapolation from these models to the human condition is not straightforward, as reflected by some recent clinical disappointments. This is not necessarily a problem with the use of mice itself, but results from our continued ignorance of the disease process and how to improve the modelling of complex interactions between different inflammatory mediators that underlie clinical pathology. This review highlights some of the strengths and weaknesses of murine models of respiratory disease

    Optimality of mutation and selection in germinal centers

    Get PDF
    The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model is compatible with the experimental observations such as the ~100-fold affinity improvements, the number of mutations, the hypermutation rate, and the "all or none" phenomenon. Moreover, we study the reasons behind the optimal parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection strength evolves as a balance between the need for affinity improvement and the requirement to pass the population bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B cell migration between germinal centers. These results could enhance our understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors.

    Get PDF
    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines

    Validity of the Supramaximal Test to Verify Maximal Oxygen Uptake in Children and Adolescents

    Get PDF
    This is the author accepted manuscript. The final version is available from Human Kinetics via the DOI in this record.Purpose: This study had 2 objectives: (1) to examine whether the validity of the supramaximal verification test for maximal oxygen uptake ( formula presented ) differs in children and adolescents when stratified for sex, body mass, and cardiorespiratory fitness and (2) to assess sensitivity and specificity of primary and secondary objective criteria from the incremental test to verify formula presented . Methods: In total, 128 children and adolescents (76 male and 52 females; age: 9.3-17.4 y) performed a ramp-incremental test to exhaustion on a cycle ergometer followed by a supramaximal test to verify formula presented . Results: Supramaximal tests verified formula presented in 88% of participants. Group incremental test peak formula presented was greater than the supramaximal test (2.27 [0.65] L·min-1 and 2.17 [0.63] L·min-1; P  .18). Supramaximal test time to exhaustion predicted supramaximal test formula presented verification (P = .04). Primary and secondary objective criteria had insufficient sensitivity (7.1%-24.1%) and specificity (50%-100%) to verify formula presented . Conclusion: The utility of supramaximal testing to verify formula presented is not affected by sex, body mass, or cardiorespiratory fitness status. Supramaximal testing should replace secondary objective criteria to verify formula presented
    corecore