119 research outputs found

    Increasing risk of revision due to deep infection after hip arthroplasty: A study on 97,344 primary total hip replacements in the Norwegian Arthroplasty Register from 1987 to 2007

    Get PDF
    Background and purpose Over the decades, improvements in surgery and perioperative routines have reduced the incidence of deep infections after total hip arthroplasty (THA). There is, however, some evidence to suggest that the incidence of infection is increasing again. We assessed the risk of revision due to deep infection for primary THAs reported to the Norwegian Arthroplasty Register (NAR) over the period 1987–2007

    Evaluating comorbidities in total hip and knee arthroplasty: available instruments

    Get PDF
    Each year millions of patients are treated for joint pain with total joint arthroplasty, and the numbers are expected to rise. Comorbid disease is known to influence the outcome of total joint arthroplasty, and its documentation is therefore of utmost importance in clinical evaluation of the individual patient as well as in research. In this paper, we examine the various methods for obtaining and assessing comorbidity information for patients undergoing joint replacement. Multiple instruments are reliable and validated for this purpose, such as the Charlson Index, Index of Coexistent Disease, and the Functional Comorbidity Index. In orthopedic studies, the Charnley classification and the American Society of Anesthesiologists physical function score (ASA) are widely used. We recommend that a well-documented comorbidity index that incorporates some aspect of mental health is used along with other appropriate instruments to objectively assess the preoperative status of the patient

    Recommendations for reporting ion mobility Mass Spectrometry measurements

    Get PDF
    Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method‐dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc

    Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches

    Get PDF
    Desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) is a powerful imaging technique for the analysis of complex surfaces. However, the often highly complex nature of biological samples is particularly challenging for MSI approaches, as options to appropriately address mass spectral complexity are limited. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers superior mass accuracy and mass resolving power, but its moderate throughput inhibits broader application. Here we demonstrate the dramatic gains in mass resolution and/or throughput of DESI-MSI on an FT-ICR MS by developing and implementing a sophisticated data acquisition and data processing pipeline. The presented pipeline integrates, for the first time, parallel ion accumulation and detection, post-processing absorption mode Fourier transform and pixel-by-pixel internal re-calibration. To achieve that, first, we developed and coupled an external high-performance data acquisition system to an FT-ICR MS instrument to record the time-domain signals (transients) in parallel with the instrument’s built-in electronics. The recorded transients were then processed by the in-house developed computationally-efficient data processing and data analysis software. Importantly, the described pipeline is shown to be applicable even to extremely large, up to 1 TB, imaging datasets. Overall, this approach provides improved analytical figures of merits such as: (i) enhanced mass resolution at no cost in experimental time; and (ii) up to 4-fold higher throughput while maintaining a constant mass resolution. Using this approach, we not only demonstrate the record 1 million mass resolution for lipid imaging from brain tissue, but explicitly demonstrate such mass resolution is required to resolve the complexity of the lipidome

    Key signaling nodes in mammary gland development and cancer: β-catenin

    Get PDF
    β-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of β-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated β-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated β-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss β-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science

    Importance of collision cross section measurements by ion mobility-mass spectrometry in structural biology

    No full text
    The field of ion mobility-mass spectrometry (IM-MS) has developed rapidly in recent decades, with new fundamental advances underpinning innovative applications. This has been particularly noticeable in the field of biomacromolecular structure determination and structural biology, with pioneering studies revealing new structural insight for complex protein assemblies which control biological function. This perspective article offers a review of recent developments in IM-MS which have enabled expanding applications in protein structural biology, principally focussing on the quantitative measurement of collision cross sections and their interpretation to describe higher order protein structures.Tara Pukal
    corecore