4 research outputs found
Recommended from our members
Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells.
The basic-Helix-Loop-Helix family (bHLH) of transcriptional factors plays a major role in regulating cellular proliferation, differentiation and phenotype maintenance. The downregulation of one of the members of bHLH family protein, inhibitor of DNA binding 2 (Id2) has been shown to induce de-differentiation of epithelial cells. Opposing regulators of epithelial/mesenchymal phenotype in renal proximal tubule epithelial cells (PTEC), TGFβ1 and BMP7 also have counter-regulatory effects in models of renal fibrosis. We investigated the regulation of Id2 by these growth factors in human PTECs and its implication in the expression of markers of epithelial versus myofibroblastic phenotype. Cellular Id2 levels were reduced by TGFβ1 treatment; this was prevented by co-incubation with BMP7. BMP7 alone increased cellular levels of Id2. TGFβ1 and BMP7 regulated Id2 through Smad2/3 and Smad1/5 dependent mechanisms respectively. TGFβ1 mediated Id2 suppression was essential for α-SMA induction in PTECs. Although Id2 over-expression prevented α-SMA induction, it did not prevent E-cadherin loss under the influence of TGFβ1. This suggests that the loss of gate keeper function of E-cadherin alone may not necessarily result in complete EMT and further transcriptional re-programming is essential to attain mesenchymal phenotype. Although BMP7 abolished TGFβ1 mediated α-SMA expression by restoring Id2 levels, the loss of Id2 was not sufficient to induce α-SMA expression even in the context of reduced E-cadherin expression. Hence, a reduction in Id2 is critical for TGFβ1-induced α-SMA expression in this model of human PTECs but is not sufficient in it self to induce α-SMA even in the context of reduced E-cadherin
Recommended from our members
High glucose-induced Smad3 linker phosphorylation and CCN2 expression are inhibited by dapagliflozin in a diabetic tubule epithelial cell model.
BACKGROUND: In the kidney glucose is freely filtered by the glomerulus and, mainly, reabsorbed by sodium glucose cotransporter 2 (SGLT2) expressed in the early proximal tubule. Human proximal tubule epithelial cells (PTECs) undergo pathological and fibrotic changes seen in diabetic kidney disease (DKD) in response to elevated glucose. We developed a specific in vitro model of DKD using primary human PTECs with exposure to high D-glucose and TGF-β1 and propose a role for SGLT2 inhibition in regulating fibrosis. METHODS: Western blotting was performed to detect cellular and secreted proteins as well as phosphorylated intracellular signalling proteins. qPCR was used to detect CCN2 RNA. Gamma glutamyl transferase (GT) activity staining was performed to confirm PTEC phenotype. SGLT2 and ERK inhibition on high D-glucose, 25 mM, and TGF-β1, 0.75 ng/ml, treated cells was explored using dapagliflozin and U0126, respectively. RESULTS: Only the combination of high D-glucose and TGF-β1 treatment significantly up-regulated CCN2 RNA and protein expression. This increase was significantly ameliorated by dapagliflozin. High D-glucose treatment raised phospho ERK which was also inhibited by dapagliflozin. TGF-β1 increased cellular phospho SSXS Smad3 serine 423 and 425, with and without high D-glucose. Glucose alone had no effect. Smad3 serine 204 phosphorylation was significantly raised by a combination of high D-glucose+TGF-β1; this rise was significantly reduced by both SGLT2 and MEK inhibition. CONCLUSIONS: We show that high D-glucose and TGF-β1 are both required for CCN2 expression. This treatment also caused Smad3 linker region phosphorylation. Both outcomes were inhibited by dapagliflozin. We have identified a novel SGLT2 -ERK mediated promotion of TGF-β1/Smad3 signalling inducing a pro-fibrotic growth factor secretion. Our data evince support for substantial renoprotective benefits of SGLT2 inhibition in the diabetic kidney
Recommended from our members
Targeting alternative splicing of fibronectin in human renal proximal tubule epithelial cells with antisense oligonucleotides to reduce EDA+ fibronectin production and block an autocrine loop that drives renal fibrosis.
TGFβ1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFβ. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFβ1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFβ1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFβ1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFβ, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFβ1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFβ1 induced endogenous TGFβ, αSMA, MMP2, MMP9 and Col I mRNA. TGFβ1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFβ1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFβ, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFβ1 was confirmed by the use of a TGFβ receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFβ driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis
The interaction of vasoactive substances during exercise modulates platelet aggregation in hypertension and coronary artery disease
<p>Abstract</p> <p>Background</p> <p>Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function.</p> <p>Methods</p> <p>Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A<sub>2</sub>, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise.</p> <p>Results</p> <p>Our results during exercise showed a) platelet activation (increased thromboxane B<sub>2</sub>, TXB<sub>2</sub>), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups).</p> <p>Conclusion</p> <p>Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB<sub>2 </sub>levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications.</p
