935 research outputs found
Development, implementation, and validation of a generic nutrient recovery model (NRM) library
The reported research developed a generic nutrient recovery model (NRM) library based on detailed chemical solution speciation and reaction kinetics, with focus on fertilizer quality and quantity as model outputs. Dynamic physicochemical three-phase process models for precipitation/crystallization, stripping and acidic air scrubbing as key unit processes were developed. In addition, a compatible biological-physicochemical anaerobic digester model was built. The latter includes sulfurgenesis, biological N/P/K/S release/uptake, interactions with organics, among other relevant processes, such as precipitation, ion pairing and liquid-gas transfer. Using a systematic database reduction procedure, a 3- to 5-fold improvement of model simulation speeds was obtained as compared to using full standard thermodynamic databases. Missing components and reactions in existing standard databases were discovered. Hence, a generic nutrient recovery database was created for future applications. The models were verified and validated against a range of experimental results. Their functionality in terms of increased process understanding and optimization was demonstrated
Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium)
We aimed to assess the presence and availability of arsenic (As) in intertidal marshes of the Scheldt estuary. Arsenic content was determined in soils sampled at 4 sampling depths in 11 marshes, together with other physicochemical characteristics. Subsequently, a greenhouse experiment was set up in which pore water arsenic (As) concentrations were measured 4 times in a 298-day period in 4 marsh soils at different sampling depths (10, 30, 60 and 90 cm) upon adjusting the water table level to 0, 40 and 80 cm below the surface of these soils. The As content in the soil varied significantly with sampling depth and location. Clay and organic matter seem to promote As accumulation in the upper soil layer (0–20 cm below the surface), whereas sulfide precipitation plays a significant role at higher sampling depths (20– 100 cm below the surface). The As concentrations in the pore water of the greenhouse experiment often significantly exceeded the Flemish soil sanitation thresholds for groundwater. There were indications that As release is not only affected by the reductive dissolution of Fe/Mn oxides, but also by e.g. a direct reduction of As(V) to As(III). Below the water table, sulfide precipitation seems to lower As mobility when reducing conditions have been sufficiently established. Above the water table, sulfates and bicarbonates induce As release from the solid soil phase to the pore water
The detection of Gravitational Waves
This chapter is concerned with the question: how do gravitational waves (GWs)
interact with their detectors? It is intended to be a theory review of the
fundamental concepts involved in interferometric and acoustic (Weber bar) GW
antennas. In particular, the type of signal the GW deposits in the detector in
each case will be assessed, as well as its intensity and deconvolution. Brief
reference will also be made to detector sensitivity characterisation, including
very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For
Proceedings of the ERE-2001 Conference (Madrid, September 2001
Observing binary inspiral in gravitational radiation: One interferometer
We investigate the sensitivity of individual LIGO/VIRGO-like interferometers
and the precision with which they can determine the characteristics of an
inspiralling binary system. Since the two interferometers of the LIGO detector
share nearly the same orientation, their joint sensitivity is similar to that
of a single, more sensitive interferometer. We express our results for a single
interferometer of both initial and advanced LIGO design, and also for the LIGO
detector in the limit that its two interferometers share exactly the same
orientation. We approximate the evolution of a binary system as driven
exclusively by leading order quadrupole gravitational radiation. To assess the
sensitivity, we calculate the rate at which sources are expected to be
observed, the range to which they are observable, and the precision with which
characteristic quantities describing the observed binary system can be
determined. Assuming a conservative rate density for coalescing neutron star
binary systems we expect that the advanced LIGO detector will observe
approximately 69~yr with an amplitude SNR greater than 8. Of these,
approximately 7~yr will be from binaries at distances greater than
950~Mpc. We explore the sensitivity of these results to a tunable parameter in
the interferometer design (the recycling frequency). The optimum choice of the
parameter is dependent on the goal of the observations, e.g., maximizing the
rate of detections or maximizing the precision of measurement. We determine the
optimum parameter values for these two cases.Comment: 40 pages (plus 7 figures), LaTeX/REVTEX3.0, NU-GR-
Gravitational waves from coalescing binaries: detection strategies and Monte Carlo estimation of parameters
The paper deals with issues pertaining the detection of gravitational waves
from coalescing binaries. We introduce the application of differential geometry
to the problem of optimal detection of the `chirp signal'. We have also carried
out extensive Monte Carlo simulations to understand the errors in the
estimation of parameters of the binary system. We find that the errors are much
more than those predicted by the covariance matrix even at a high SNR of 10-15.
We also introduce the idea of using the instant of coalescence rather than the
time of arrival to determine the direction to the source.Comment: 28 pages, REVTEX, 12 figures (bundled via uufiles command along with
this paper) submitted to Phys. Rev.
Experimental demonstration of a squeezing enhanced power recycled Michelson interferometer for gravitational wave detection
Interferometric gravitational wave detectors are expected to be limited by
shot noise at some frequencies. We experimentally demonstrate that a power
recycled Michelson with squeezed light injected into the dark port can overcome
this limit. An improvement in the signal-to-noise ratio of 2.3dB is measured
and locked stably for long periods of time. The configuration, control and
signal readout of our experiment are compatible with current gravitational wave
detector designs. We consider the application of our system to long baseline
interferometer designs such as LIGO.Comment: 4 pages 4 figure
Detection, Measurement and Gravitational Radiation
Here I examine how to determine the sensitivity of the LIGO, VIRGO, and LAGOS
gravitational wave detectors to sources of gravitational radiation by
considering the process by which data are analyzed in a noisy detector. By
constructing the probability that the detector output is consistent with the
presence of a signal, I show how to (1) quantify the uncertainty that the
output contains a signal and is not simply noise, and (2) construct the
probability distribution that the signal parameterization has a certain value.
From the distribution and its mode I determine volumes in parameter
space such that actual signal parameters are in with probability . If
we are {\em designing} a detector, or determining the suitability of an
existing detector for observing a new source, then we don't have detector
output to analyze but are interested in the ``most likely'' response of the
detector to a signal. I exploit the techniques just described to determine the
``most likely'' volumes for detector output corresponding to the source.
Finally, as an example, I apply these techniques to anticipate the sensitivity
of the LIGO and LAGOS detectors to the gravitational radiation from a perturbed
Kerr black hole.Comment: 37 pages (plus 6 figures), LaTeX/REVTE
Noise parametric identification and whitening for LIGO 40-meter interferometer data
We report the analysis we made on data taken by Caltech 40-meter prototype
interferometer to identify the noise power spectral density and to whiten the
sequence of noise. We concentrate our study on data taken in November 1994, in
particular we analyzed two frames of data: the 18nov94.2.frame and the
19nov94.2.frame.
We show that it is possible to whiten these data, to a good degree of
whiteness, using a high order whitening filter. Moreover we can choose to
whiten only restricted band of frequencies around the region we are interested
in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review
Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion
Endogenous retroviruses (ERVs) are proviral sequences that result from colonization of the host germ line by exogenous retroviruses. The majority of ERVs represent defective retroviral copies. However, for most ERVs, endogenization occurred millions of years ago, obscuring the stages by which ERVs become defective and the changes in both virus and host important to the process. The koala retrovirus, KoRV, only recently began invading the germ line of the koala (Phascolarctos cinereus), permitting analysis of retroviral endogenization on a prospective basis. Here, we report that recombination with host genomic elements disrupts retroviruses during the earliest stages of germ-line invasion. One type of recombinant, designated recKoRV1, was formed by recombination of KoRV with an older degraded retroelement. Many genomic copies of recKoRV1 were detected across koalas. The prevalence of recKoRV1 was higher in northern than in southern Australian koalas, as is the case for KoRV, with differences in recKoRV1 prevalence, but not KoRV prevalence, between inland and coastal New South Wales. At least 15 additional different recombination events between KoRV and the older endogenous retroelement generated distinct recKoRVs with different geographic distributions. All of the identified recombinant viruses appear to have arisen independently and have highly disrupted ORFs, which suggests that recombination with existing degraded endogenous retroelements may be a means by which replication-competent ERVs that enter the germ line are degraded
Squeezed light in a frontal-phase-modulated signal-recycled interferometer
The application of squeezed Light to a frontal-phase-modulated signal-recycled interferometer is considered. We present a simple model to understand the required spectrum of squeezing so as to make the interferometer more sensitive. In particular we analyze the broad-and narrow-band cases for signal recycling and fmd that the sensitivity of the detector can be enhanced provided an appropriate input squeezed spectrum is used. We also discuss the effect of using squeezed light on the bandwidth of the detector
- …
