145 research outputs found

    Gut microbiome signature and nasal lavage inflammatory markers in young people with asthma

    Full text link
    BACKGROUND: Asthma is a complex disease and a severe global public health problem resulting from interactions between genetic background and environmental exposures. It has been suggested that gut microbiota may be related to asthma development; however, such relationships needs further investigation. OBJECTIVE: This study aimed to characterize the gut microbiota as well as the nasal lavage cytokine profile of asthmatic and nonasthmatic individuals. METHODS: Stool and nasal lavage samples were collected from 29 children and adolescents with type 2 asthma and 28 children without asthma in Brazil. Amplicon sequencing of the stool bacterial V4 region of the 16S rRNA gene was performed using Illumina MiSeq. Microbiota analysis was performed by QIIME 2 and PICRUSt2. Type 2 asthma phenotype was characterized by high sputum eosinophil counts and positive skin prick tests for house dust mite, cockroach, and/or cat or dog dander. The nasal immune marker profile was assessed using a customized multiplex panel. RESULTS: Stool microbiota differed significantly between asthmatic and nonasthmatic participants (P = .001). Bacteroides was more abundant in participants with asthma (P < .05), while Prevotella was more abundant in nonasthmatic individuals (P < .05). In people with asthma, the relative abundance of Bacteroides correlated with IL-4 concentration in nasal lavage samples. Inference of microbiota functional capacity identified differential fatty acid biosynthesis in asthmatic compared to nonasthmatic subjects. CONCLUSION: The stool microbiota differed between asthmatic and nonasthmatic young people in Brazil. Asthma was associated with higher Bacteroides levels, which correlated with nasal IL-4 concentration.fals

    Recent development of allele frequencies and exclusion probabilities of microsatellites used for parentage control in the German Holstein Friesian cattle population

    Full text link
    BACKGROUND: Methods for parentage control in cattle have changed since their initial implementation in the late 1950’s from blood group typing to more current single nucleotide polymorphism determination. In the early 1990’s, 12 microsatellites were selected by the International Society for Animal Genetics based on their informativeness and robustness in a variety of different cattle breeds. Since then this panel is used as standard in cattle herd book breeding and its application is accompanied by recurrent international comparison tests ensuring permanent validity for the most common commercial dairy and beef cattle breeds for example Holstein Friesian, Simmental, Angus, and Hereford. Although, nearly every parentage can be resolved using these microsatellites, cases with very close relatives became an emerging resolution problem during recent years. This is mainly due to an increase of monomorphism and a trend to the fixation of alleles, although no direct selection against their variability was applied. Thus other effects must be presumed resulting in a loss of polymorphism information content, heterozygosity, and exclusion probabilities. RESULTS: To determine changes of allele frequencies and exclusion probabilities, we analyzed the development of these parameters for the 12 microsatellites from 2004 to 2014. One hundred sixty eight thousand recorded Holstein Friesian cattle genotypes were evaluated. During this period certain alleles of nine microsatellites increased significantly (t-values >5). When calculating the exclusion probabilities for 11 microsatellites, reduction was determined for the three situations, i.e. one parent is wrongly identified (p = 0.01), both parents are wrongly identified (p = 0.005), and the genotype of one parent is missing (p = 0.048). With the addition of BM1818 to the marker set in 2009, this development was corrected leading to significant increases in exclusion probabilities. Although, the exclusion probabilities for the three family situations using the 12 microsatellites are >99 %, the clarification of 142 relationships in 40,000 situations where one parent is missing will still be impossible. Twenty-five sires were identified that are responsible for the most significant microsatellite allele increases in the population. The corresponding alleles are mainly associated with milk protein and fat yield, body weight at birth and weaning, as well as somatic cell score, milk fat percentage, and longissimus muscle area. CONCLUSIONS: Our data show that most of the microsatellites used for parentage control in cattle show directional changes in allele frequencies consistent with the history of artificial selection in the German Holstein population

    Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complex data sets generated by higher-order polychromatic flow cytometry experiments are a challenge to analyze. Here we describe Exhaustive Expansion, a data analysis approach for deriving hundreds to thousands of cell phenotypes from raw data, and for interrogating these phenotypes to identify populations of biological interest given the experimental context.</p> <p>Methods</p> <p>We apply this approach to two studies, illustrating its broad applicability. The first examines the longitudinal changes in circulating human memory T cell populations within individual patients in response to a melanoma peptide (gp100<sub>209-2M</sub>) cancer vaccine, using 5 monoclonal antibodies (mAbs) to delineate subpopulations of viable, gp100-specific, CD8+ T cells. The second study measures the mobilization of stem cells in porcine bone marrow that may be associated with wound healing, and uses 5 different staining panels consisting of 8 mAbs each.</p> <p>Results</p> <p>In the first study, our analysis suggests that the cell surface markers CD45RA, CD27 and CD28, commonly used in historical lower order (2-4 color) flow cytometry analysis to distinguish memory from naïve and effector T cells, may not be obligate parameters in defining central memory T cells (T<sub>CM</sub>). In the second study, we identify novel phenotypes such as CD29+CD31+CD56+CXCR4+CD90+Sca1-CD44+, which may characterize progenitor cells that are significantly increased in wounded animals as compared to controls.</p> <p>Conclusions</p> <p>Taken together, these results demonstrate that Exhaustive Expansion supports thorough interrogation of complex higher-order flow cytometry data sets and aids in the identification of potentially clinically relevant findings.</p
    corecore