179 research outputs found
Different applications and differentiated libraries for crystallographic fragment screening
\ua9 2024 The AuthorsMacromolecular X-ray crystallography allows detection and characterisation of the binding of small, low-affinity chemical fragments. Here we review the utility of fragment screening for drug discovery, its potential for use in discovery science, as well as some of the distinct types of fragments that have been compiled into libraries
Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition
Dysregulation of the cell cycle characterises many cancer subtypes, providing a rationale for developing cyclin-dependent kinase (CDK) inhibitors. Potent CDK2 inhibitors might target certain cancers in which CCNE1 is amplified. However, current CDK2 inhibitors also inhibit CDK1, generating a toxicity liability. We have used biophysical measurements and X-ray crystallography to investigate the ATP-competitive inhibitor binding properties of cyclin-free and cyclin-bound CDK1 and CDK2. We show that these kinases can readily be distinguished by such inhibitors when cyclin-free, but not when cyclin-bound. The basis for this discrimination is unclear from either inspection or molecular dynamics simulation of ligand-bound CDKs, but is reflected in the contacts made between the kinase N- and C-lobes. We conclude that there is a subtle but profound difference between the conformational energy landscapes of cyclin-free CDK1 and CDK2. The unusual properties of CDK1 might be exploited to differentiate CDK1 from other CDKs in future cancer therapeutic design
Structural requirements for the specific binding of CRABP2 to cyclin D3
\ua9 2024 The Author(s). Cellular retinoic acid binding protein 2 (CRABP2) transports retinoic acid from the cytoplasm to the nucleus where it then transfers its cargo to retinoic acid receptor-containing complexes leading to activation of gene transcription. We demonstrate using purified proteins that CRABP2 is also a cyclin D3-specific binding protein and that the CRABP2 cyclin D3 binding site and the proposed CRABP2 nuclear localization sequence overlap. Both sequences are within the helix-loop-helix motif that forms a lid to the retinoic acid binding pocket. Mutations within this sequence that block both cyclin D3 and retinoic acid binding promote formation of a CRABP2 structure in which the retinoic acid binding pocket is occupied by an alternative lid conformation. Structural and functional analysis of CRABP2 and cyclin D3 mutants combined with AlphaFold models of the ternary CDK4/6-cyclin D3-CRABP2 complex supports the identification of an α-helical protein binding site on the cyclin D3 C-terminal cyclin box fold
Correction to: Factors affecting irreversible inhibition of EGFR and influence of chirality on covalent binding (Communications Chemistry, (2025), 8, 1, (111), 10.1038/s42004-025-01501-6)
\ua9 The Author(s) 2025.Correction to: Communications Chemistryhttps://doi.org/10.1038/s42004-025-01501-6, published online 09 April 2025 In the version of the article initially published, in Fig. 1, a methoxy group was missing from structure 2 and has now been amended in the HTML and PDF versions of the article, as seen in Fig. 1 below. Fig. 1 Original and corrected Fig. 1 Original Fig. 1 (Figure presented.) Corrected Fig. 1 (Figure presented.
Factors affecting irreversible inhibition of EGFR and influence of chirality on covalent binding
The discovery of targeted covalent inhibitors is of increasing importance in drug discovery. Finding efficient covalent binders requires modulation of warhead reactivity and optimisation of warhead geometry and non-covalent interactions. Uncoupling the contributions that these factors make to potency is difficult and best practice for a testing cascade that is pragmatic and informative is yet to be fully established. We studied the structure-reactivity-activity relationships of a series of analogues of the EGFR inhibitor poziotinib with point changes in two substructural regions as well as variations in warhead reactivity and geometry. This showed that a simple probe displacement assay that is appropriately tuned in respect of timing and reagent concentrations can reveal structural effects on all three factors: non-covalent affinity, warhead reactivity and geometry. These effects include the detection of potency differences between an enantiomeric pair that differ greatly in their activity and their capacity to form a covalent bond. This difference is rationalised by X-ray crystallography and computational studies and the effect translates quantitatively into cellular mechanistic and phenotypic effect
Crystallographic fragment screening of CDK2-cyclin A: FragLites map sites of protein-protein interaction
\ua9 2025 The Author(s). Sites of protein-protein interaction (PPI) are potentially more selective binding sites for therapeutics than protein substrate-binding sites. PPIs include distinct regions frequently called “hotspots,” sites of key amino acid interactions. Prospective identification of these hotspots through X-ray crystallographic screening could assist in the identification of separation of function mutants for experimental validation, enhance confidence in AI-generated multiprotein complex predictions, and accelerate development of selective chemical probes. To explore these applications, we utilize the FragLite library to examine the binding surfaces of CDK2-cyclin A. The many protein- and peptide-CDK2-cyclin A complexes that have been structurally characterized make this complex an appropriate test case. We show that FragLites comprehensively map both known sites of protein-protein interaction on CDK2-cyclin A and identify a possible uncharacterized site, providing a structural method toward directing mechanistic studies and starting points for chemical probe design
Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg[superscript 2+], Ca[superscript 2+], and Mn[superscript 2+] were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.Malaysia-MIT Biotechnology Partnership Programm
Nanobodies restore stability to cancer-associated mutants of tumor suppressor protein p16INK4a
\ua9 2025 The Author(s)We describe the generation and characterization of camelid single-domain antibodies (nanobodies) raised against tumor suppressor protein p16INK4a (p16). p16 is a cell cycle regulator that inhibits cyclin-dependent kinases CDK4 and CDK6 and is inactivated in sporadic and familial cancers. The majority of p16 missense mutations cause loss of function by destabilizing the protein\u27s structure. We identify nanobodies that bind p16 with nanomolar affinities and restore the stability of many different cancer-associated p16 mutations located at sites throughout the protein. The crystal structure of a nanobody-p16 complex reveals that the nanobody binds to the opposite face of p16 to the CDK-binding interface permitting formation of a ternary complex. We confirm that nanobodies bind to p16 in a cellular setting and do not preclude p16 binding to CDK6 and its ability to induce cell-cycle arrest. These findings indicate that nanobodies merit testing as pharmacological chaperones for p16 reactivation in the cell
Tuning the binding affinity and selectivity of perfluoroaryl-stapled peptides by cysteine-editing.
A growing number of approaches to 'staple' α-helical peptides into a bioactive conformation using cysteine cross-linking are emerging. Here we explore the replacement of L-cysteine with 'cysteine analogues' in combinations of different stereochemistry, side chain length and beta-carbon substitution, to examine the influence that the thiol-containing residue(s) has on target protein-binding affinity in a well explored model system, p53-MDM2/MDMX. In some cases, replacement of one or more L-cysteine residues afforded significant changes in the measured binding affinity and target selectivity of the peptide. Computationally constructed homology models indicate that some modifications, such as incorporating two D-cysteines favourably alter the positions of key functional amino acid side chains, which is likely to cause changes in binding affinity, in agreement with measured SPR data
- …
