906 research outputs found

    The History of Cosmic Baryons: X-ray Emission vs. Star Formation Rate

    Get PDF
    We relate the star formation from cold baryons in virialized structures to the X-ray properties of the associated diffuse, hot baryonic component. Our computations use the standard ``semi-analytic'' models to describe i) the evolution of dark matter halos through merging after the hierarchical clustering, ii) the star formation governed by radiative cooling and by supernova feedback, iii) the hydro- and thermodynamics of the hot gas, rendered with our Punctuated Equilibria model. So we relate the X-ray observables concerning the intra-cluster medium to the thermal energy of the gas pre-heated and expelled by supernovae following star formation, and then accreted during the subsequent merging events. We show that at fluxes fainter than FX1015F_X\approx 10^{-15} erg/cm2^2 s (well within the reach of next generation X-ray observatories) the X-ray counts of extended extragalactic sources (as well as the faint end of the luminosity function, the contribution to the soft X-ray background, and the LXTL_X-T correlation at the group scales) increase considerably when the star formation rate is enhanced for z>1 as indicated by growing optical/infrared evidence. Specifically, the counts in the range 0.5-2 keV are increased by factors 4\sim 4 when the the feedback is decreased and star formation is enhanced as to yield a flat shape of the star formation rate for 2<z<4.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    Note su reperti antinoiti

    Get PDF

    The interaction-driven starburst contribution to the cosmic star formation rate density

    Full text link
    An increasing amount of observational evidence supports the notion that there are two modes of star formation: a quiescent mode in disk-like galaxies, and a starburst mode, which is generally interpreted as driven by merging. Using a semi-analytic model of galaxy formation, we derive the relative contribution to the cosmic star formation rate density of quiescently starforming and starburst galaxies, predicted under the assumption that starburst events are triggered by galaxy encounters (merging and fly-by kind) during their merging histories. We show that, within this framework, quiescently starforming galaxies dominate the cosmic star formation rate density at all redshifts. The contribution of the burst-dominated starforming galaxies increases with redshift, rising from <5% at low redshift (z5. We estimated that the fraction of the final (z=0) galaxy stellar mass which is formed through the burst component of star formation is ~10% for 10^10 M_\odot<M_*<10^11.5 M_\odot. Starburst galaxies, selected according to their distance from the galaxy main sequence, account for ~10% of the star formation rate density in the redshift interval 1.5<z<2.5, i.e. at the cosmic peak of the star formation activity.Comment: 11 pages, 8 figures. Accepted for publication in A&

    The SZ Effect as a Probe of Non-Gravitational Entropy in Groups and Clusters of Galaxies

    Get PDF
    We investigate how strongly and at what scales the Sunyaev- Zel'dovich effect reflects the shifting balance between the two processes that compete for governing the density and the thermodynamic state of the hot intra-cluster medium pervading clusters and groups of galaxies: the hierarchical clustering of the DM; the non-gravitational energy and momentum fed back into the ICM by the condensing baryons. We base on a SAM of galaxy formation and clustering to describe how the baryons are partitioned among the hot, the cool and the stellar phase; the partition shifts as the galaxies cluster hierarchically, and as the feedback by stellar winds and SN explosions follows the star formation. Their impact is amplified by the same large scale accretion shocks that thermalize the gravitational energy of gas falling into the growing potential wells. We compute the Compton parameter yy, and find a relation of yy with the ICM temperature, the yTy-T relation, which departs from the self-similar scaling and bends down at temperatures typical of galaxy groups. We model-independently relate this with the analogous behaviour of the L_x - T relation, and discuss to what extent our results are generic of the hierarchical models of galaxy formation and clustering.Comment: 24 pages, 6 figures, submitted to MNRAS; typos correcte

    Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2

    Get PDF
    We compute the mass function of galactic dark matter halos for different values of the Warm Dark Matter (WDM) particle mass m_X and compare it with the abundance of ultra-faint galaxies derived from the deepest UV luminosity function available so far at redshift z~2. The magnitude limit M_UV=-13 reached by such observations allows us to probe the WDM mass functions down to scales close to or smaller than the half-mass mode mass scale ~10^9 M_sun. This allowed for an efficient discrimination among predictions for different m_X which turn out to be independent of the star formation efficiency adopted to associate the observed UV luminosities of galaxies to the corresponding dark matter masses. Adopting a conservative approach to take into account the existing theoretical uncertainties in the galaxy halo mass function, we derive a robust limit m_X>1.8 keV for the mass of thermal relic WDM particles when comparing with the measured abundance of the faintest galaxies, while m_X>1.5 keV is obtained when we compare with the Schechter fit to the observed luminosity function. The corresponding lower limit for sterile neutrinos depends on the modeling of the production mechanism; for instance m_sterile > 4 keV holds for the Shi-Fuller mechanism. We discuss the impact of observational uncertainties on the above bound on m_X. As a baseline for comparison with forthcoming observations from the HST Frontier Field, we provide predictions for the abundance of faint galaxies with M_UV=-13 for different values of m_X and of the star formation efficiency, valid up to z~4.Comment: 14 pages, 3 figures. Accepted for publication in The Astrophysical Journa

    Triggering Active Galactic Nuclei in Hierarchical Galaxy Formation: Disk instability vs. Interactions

    Full text link
    Using a semi analytic model for galaxy formation we investigate the effects of Black Hole accretion triggered by disk instabilities (DI) in isolated galaxies on the evolution of AGN. Specifically, we took on, developed and expanded the Hopkins & Quataert (2011) model for the mass inflow following disk perturbations, and compare the corresponding evolution of the AGN population with that arising in a scenario where galaxy interactions trigger AGN (IT mode). We extended and developed the DI model by including different disk surface density profiles, to study the maximal contribution of DI to the evolution of the AGN population. We obtained the following results: i) for luminosities corresponding to M145026M_{1450}\gtrsim -26 the DI mode can provide the BH accretion needed to match the observed AGN luminosity functions up to z4.5z \approx 4.5; in such a luminosity range and redshift, it can compete with the IT scenario as the main driver of cosmological evolution of AGN; ii) The DI scenario cannot provide the observed abundance of high-luminosity QSO with M145026M_{1450}\lesssim -26 AGN, as well as the abundance of high-redhshift z4.5z \approx 4.5 QSOs with M145024M_{1450}\lesssim -24, while the IT scenario provides an acceptable match up to z6z \approx 6, as found in our earliest works; iii) The dispersion of the distributions of Eddington ratio for low- and intermediate-luminosity AGN (bolometric LAGNL_{AGN} = 104310^{43} - 104510^{45} erg/s) is predicted to be much smaller in the DI scenario compared to the IT mode; iv) The above conclusions are robust with respect to the explored variants of the Hopkins & Quataert (2011) model. We discuss the physical origin of our findings, and how it is possible to pin down the dominant fueling mechanism in the low-intermediate luminosity range M145026M_{1450}\gtrsim -26 where both the DI and the IT modes are viable candidates as drivers for the AGN evolution.Comment: Accepted for publication in Astronomy & Astrophysics, 24 pages, 8 figures; updated reference

    The Building Up of the Black Hole Mass - Stellar Mass Relation

    Full text link
    We derive the growth of SMBHs relative to the stellar content of their host galaxy predicted under the assumption of BH accretion triggered by galaxy encounters occurring during their merging histories. We show that, within this framework, the ratio Gamma=(M_BH/M_*)(z)/(M_BH/M_*)(z=0) between the Black Hole mass and the galactic stellar mass (normalized to the local value) depends on both BH mass and redshift. While the average value and the spread of Gamma(z) increase with z, such an effect is larger for massive BHs, reaching values Gamma=5 for massive Black Holes (M>10^9 M_{\odot}) at z>4, in agreement with recent observations of high-redshift QSOs; this is due to the effectiveness of interactions in triggering BH accretion in high-density environments at high redshifts. To test such a model against observations, we worked out specific predictions for sub-samples of the simulated galaxies corresponding to the different observational samples for which measurements of Gamma have been obtained. We found that for Broad Line AGNs at 1<z<2 values of Gamma=2 are expected, with a mild trend toward larger value for increasing BH mass. Instead, when we select from our Monte Carlo simulations only extremely gas rich, rapidly star forming galaxies at 2<z<3, we find low values 0.3<Gamma<1.5, consistent with recent observational findings on samples of sub-mm galaxies; in the framework of our model, these objects end up at z=0 in low-to-intermediate mass BHs (M<10^9 M_{\odot}), and they do not represent typical paths leading to local massive galaxies. The latter have formed preferentially through paths passing above the local M_*-M_BH relation. We discuss how the global picture emerging from the model is consistent with a downsizing scenario, where massive BHs accrete a larger fraction of their final mass at high redshifts z>4.Comment: 13 pages, 9 figures. Accepted to MNRA
    corecore